Systematic Mapping of Fault Monitoring Techniques Based on Data Mining

  • Paulo Ricardo Fernandes Rodrigues UFC
  • Valéria Lelli UFC

Resumo


The increasing complexity and interconnectivity of modern software systems have made fault detection a significant challenge. Traditional testing techniques often fall short, especially in dynamic and large-scale environments. To address this issue, various real-time monitoring approaches based on data mining have been proposed. These approaches, through continuous system analysis and the use of anomaly detection techniques, are capable of identifying faults in software systems. This work presents a systematic mapping of the literature on these monitoring techniques, aiming to identify implementation challenges and provide a comprehensive overview of the current state of research. The mapping was conducted using the Scopus database and 84 studies were selected to help answer the research questions defined in this work. This analysis identified the main fault detection techniques, such as neural networks and Support Vector Machines (SVMs), the types of systems monitored, including Cloud and Big Data platforms, common fault categories like cybersecurity and performance, and the evaluation metrics used, such as the F1-score and prediction time. Despite these established approaches, the study also revealed significant challenges that hinder progress, including the difficulty of labeling data for supervised models, the complexity of interpreting the generated models, and the need for computationally efficient monitoring.

Palavras-chave: fault detection, anomaly detection, data mining

Referências

[n. d.]. ARF-Predictor: Effective Prediction of Aging-Related Failure Using Entropy | Request PDF. ( [n. d.]). DOI: 10.1109/TDSC.2016.2604381

[n. d.]. A Methodology for Detection and Estimation of Software Aging. In ResearchGate. DOI: 10.1109/ISSRE.1998.730892

[n. d.]. Modeling of Software Aging Based on Non-stationary Time Series. In ResearchGate. DOI: 10.1109/ISAI.2016.0046

[n. d.]. Real-time Detection of Performance Anomalies for Cloud Services. In ResearchGate. DOI: 10.1109/IWQoS.2016.7590412

[n. d.]. Statistical Technique for Online Anomaly Detection Using Spark over Heterogeneous Data from Multi-Source VMware Performance Data. In ResearchGate. DOI: 10.1109/BigData.2014.7004343

ResearchGate [n. d.]. UBL: Unsupervised Behavior Learning for Predicting Performance Anomalies in Virtualized Cloud Systems. ResearchGate. DOI: 10.1145/2371536.2371572

Amr S. Abed, Charles Clancy, and David S. Levy. [n. d.]. Intrusion Detection System for Applications Using Linux Containers. In Security and Trust Management (Cham, 2015), Sara Foresti (Ed.). Springer International Publishing, 123–135. DOI: 10.1007/978-3-319-24858-5_8

A. Alnafessah and G. Casale. [n. d.]. TRACK-Plus: Optimizing Artificial Neural Networks for Hybrid Anomaly Detection in Data Streaming Systems. 8 ( [n. d.]), 146613–146626. DOI: 10.1109/ACCESS.2020.3015346

Ahmad Alnafessah and Giuliano Casale. 2020. Artificial Neural Networks Based Techniques for Anomaly Detection in Apache Spark. 23, 2 (2020), 1345–1360. DOI: 10.1007/s10586-019-02998-y

Julija Asmuss and Gunars Lauks. 2015. Network Traffic Classification for Anomaly Detection Fuzzy Clustering Based Approach. In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). 313–318. DOI: 10.1109/FSKD.2015.7381960

Matthew Bailey, Connor Collins, Matthew Sinda, and Gongzhu Hu. 2017. Intrusion Detection Using Clustering of Network Traffic Flows. In 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). 615–620. DOI: 10.1109/SNPD.2017.8022786

Kirti Bhandari, Kuldeep Kumar, and Amrit Lal Sangal. 2022. Data quality issues in software fault prediction: a systematic literature review. Artif. Intell. Rev. 56, 8 (Dec. 2022), 7839–7908. DOI: 10.1007/s10462-022-10371-6

Monowar H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. 2011. NADO: Network Anomaly Detection Using Outlier Approach. In Proceedings of the 2011 International Conference on Communication, Computing & Security (New York, NY, USA) (ICCCS ’11). Association for Computing Machinery, 531–536. DOI: 10.1145/1947940.1948050

Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans Andersen. 2010. Fingerprinting the Datacenter: Automated Classification of Performance Crises. In Proceedings of the 5th European Conference on Computer Systems (EuroSys ’10). Association for Computing Machinery, New York, NY, USA, 111–124. DOI: 10.1145/1755913.1755926

Karina Castelo Branco, Valéria Dantas, and Liana Carvalho. 2024. Interoperability Testing Guide for the Internet of Things. In Proceedings of the 30th Brazilian Symposium on Multimedia and the Web (Juiz de Fora/MG). SBC, Porto Alegre, RS, Brasil, 188–196. DOI: 10.5753/webmedia.2024.242058

Jakub Breier and Jana Branišová. 2015. Anomaly Detection from Log Files Using Data Mining Techniques. In Information Science and Applications (Berlin, Heidelberg), Kuinam J. Kim (Ed.). Springer, 449–457. DOI: 10.1007/978-3-662-46578-3_53

Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. [n. d.]. Recurrent Neural Network Attention Mechanisms for Interpretable System Log Anomaly Detection. In Proceedings of the First Workshop on Machine Learning for Computing Systems (New York, NY, USA, 2018-06-12) (MLCS’18). Association for Computing Machinery, 1–8. DOI: 10.1145/3217871.3217872

Armin Catovic, Carolyn Cartwright, Yasmin Tesfaldet Gebreyesus, and Simone Ferlin. [n. d.]. Linnaeus: A Highly Reusable and Adaptable ML Based Log Classification Pipeline. In 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN) (2021-05). 11–18. DOI: 10.1109/WAIN52551. 2021.00008

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages. DOI: 10.1145/1541880.1541882

M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. 2002. Pinpoint: Problem Determination in Large, Dynamic Internet Services. In Proceedings International Conference on Dependable Systems and Networks. 595–604. DOI: 10.1109/DSN.2002.1029005

Boxiang Dong, Zhengzhang Chen, Hui (Wendy) Wang, Lu-An Tang, Kai Zhang, Ying Lin, Zhichun Li, and Haifeng Chen. 2017. Efficient Discovery of Abnormal Event Sequences in Enterprise Security Systems. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (New York, NY, USA) (CIKM ’17). Association for Computing Machinery, 707–715. DOI: 10.1145/3132847.3132854

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (NewYork, NY, USA) (CCS ’17). Association for Computing Machinery, 1285–1298. DOI: 10.1145/3133956.3134015

Manzoor Elahi, Xinjie Lv, Wasif Nisar, Imran Ali Khan, Ying Qiao, and Hongan Wang. 2008. DB-Outlier Detection Algorithm Using Divide and Conquer Approach over Dynamic DataStream. In 2008 International Conference on Computer Science and Software Engineering, Vol. 4. 438–443. DOI: 10.1109/CSSE.2008.1053

Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. 2002. A Geometric Framework for Unsupervised Anomaly Detection. In Applications of Data Mining in Computer Security, Daniel Barbará and Sushil Jajodia (Eds.). Springer US, 77–101. DOI: 10.1007/978-1-4615-0953-0_4

prefix=de useprefix=true family=Assis, given=Marcos V. O., Joel J. P. C. Rodrigues, and Mario Lemes Proença. 2013. A Novel Anomaly Detection System Based on Seven-Dimensional Flow Analysis. In 2013 IEEE Global Communications Conference (GLOBECOM). 735–740. DOI: 10.1109/GLOCOM.2013.6831160

Kieran Flanagan, Enda Fallon, Abir Awad, and Paul Connolly. 2017. Self-Configuring NetFlow Anomaly Detection Using Cluster Density Analysis. In 2017 19th International Conference on Advanced Communication Technology (ICACT). 421–427. DOI: 10.23919/ICACT.2017.7890124

Kieran Flanagan, Enda Fallon, Paul Jacob, Abir Awad, and Paul Connolly. [n. d.]. 2D2N: A Dynamic Degenerative Neural Network for Classification of Images of Live Network Data. In 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC) (2019-01). 1–7. DOI: 10.1109/CCNC.2019.8651695

Song Fu, Jianguo Liu, and Husanbir Pannu. 2012. A Hybrid Anomaly Detection Framework in Cloud Computing Using One-Class and Two-Class Support Vector Machines. In Advanced Data Mining and Applications (Berlin, Heidelberg), Shuigeng Zhou, Songmao Zhang, and George Karypis (Eds.). Springer, 726–738. DOI: 10.1007/978-3-642-35527-1_60

Errin W Fulp, Glenn A Fink, and Jereme N Haack. [n. d.]. Predicting Computer System Failures Using Support Vector Machines. ( [n. d.]).

Matthias Galster, Uwe Zdun, Danny Weyns, Rick Rabiser, Bo Zhang, Michael Goedicke, and Gilles Perrouin. 2017. Variability and Complexity in Software Design: Towards a Research Agenda. SIGSOFT Softw. Eng. Notes 41, 6 (Jan. 2017), 27–30. DOI: 10.1145/3011286.3011291

Johannes Grohmann, Nikolas Herbst, Avi Chalbani, Yair Arian, Noam Peretz, and Samuel Kounev. 2020. A Taxonomy of Techniques for SLO Failure Prediction in Software Systems. Computers 9, 1 (2020). DOI: 10.3390/computers9010010

K.C. Gross, V. Bhardwaj, and R. Bickford. [n. d.]. Proactive Detection of Software Aging Mechanisms in Performance Critical Computers. In 27th Annual NASA Goddard/IEEE Software Engineering Workshop, 2002. Proceedings. (2002-12). 17–23. DOI: 10.1109/SEW.2002.1199445

M. Grottke, L. Li, K. Vaidyanathan, and K.S. Trivedi. 2006. Analysis of Software Aging in a Web Server. 55, 3 (2006), 411–420. DOI: 10.1109/TR.2006.879609

Xiaohui Gu and Haixun Wang. 2009. Online Anomaly Prediction for Robust Cluster Systems. In 2009 IEEE 25th International Conference on Data Engineering. 1000–1011. DOI: 10.1109/ICDE.2009.128

Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. LogBERT: Log Anomaly Detection via BERT. In 2021 International Joint Conference on Neural Networks (IJCNN). 1–8. DOI: 10.1109/IJCNN52387.2021.9534113

Md Sadun Haq, Thien Duc Nguyen, Ali Şaman Tosun, Franziska Vollmer, Turgay Korkmaz, and Ahmad-Reza Sadeghi. 2024. SoK: A Comprehensive Analysis and Evaluation of Docker Container Attack and Defense Mechanisms. In 2024 IEEE Symposium on Security and Privacy (SP). 4573–4590. DOI: 10.1109/SP54263.2024.00268

Mahmudul Hasan, Md. Milon Islam, Md Ishrak Islam Zarif, and M. M. A. Hashem. 2019. Attack and Anomaly Detection in IoT Sensors in IoT Sites Using Machine Learning Approaches. 7 (2019), 100059. DOI: 10.1016/j.iot.2019.100059

Rin Hirakawa, Keitaro Tominaga, and Yoshihisa Nakatoh. 2020. Study on Software Log Anomaly Detection System with Unsupervised Learning Algorithm. Advances in Intelligent Systems and Computing 1152 AISC (2020), 122 – 128. DOI: 10.1007/978-3-030-44267-5_18 Cited by: 1.

Rin Hirakawa, Hironori Uchida, Asato Nakano, Keitaro Tominaga, and Yoshihisa Nakatoh. 2021. Anomaly Detection on Software Log Based on Temporal Memory. 95 (2021), 107433. DOI: 10.1016/j.compeleceng.2021.107433

Rin Hirakawa, Hironori Uchida, Asato Nakano, Keitaro Tominaga, and Yoshihisa Nakatoh. 2021. Large Scale Log Anomaly Detection via Spatial Pooling. 1 (2021), 188–196. DOI: 10.1016/j.cogr.2021.10.001

Chengqiang Huang, Geyong Min, Yulei Wu, Yiming Ying, Ke Pei, and Zuochang Xiang. 2022. Time Series Anomaly Detection for Trustworthy Services in Cloud Computing Systems. 8, 1 (2022), 60–72. DOI: 10.1109/TBDATA.2017.2711039

Fabian Huch, Mojdeh Golagha, Ana Petrovska, and Alexander Krauss. [n. d.]. Machine Learning-Based Run-Time Anomaly Detection in Software Systems: An Industrial Evaluation. In 2018 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE) (2018-03). 13–18. DOI: 10.1109/MALTESQUE.2018.8368453

Olumuyiwa Ibidunmoye, Thijs Metsch, and Erik Elmroth. 2016. Real-Time Detection of Performance Anomalies for Cloud Services. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS). 1–2. DOI: 10.1109/IWQoS.2016.7590412

IEEE. 2010. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993) (2010), 1–23. DOI: 10.1109/IEEESTD.2010.5399061

Tong Jia, Ying Li, Chengbo Zhang,Wensheng Xia, Jie Jiang, and Yuhong Liu. 2018. Machine Deserves Better Logging: A Log Enhancement Approach for Automatic Fault Diagnosis. In 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). 106–111. DOI: 10.1109/ISSREW.2018.00-22

Peng Jieyang, Andreas Kimmig, Wang Dongkun, Zhibin Niu, Fan Zhi, Wang Jiahai, Xiufeng Liu, and Jivka Ovtcharova. 2022. A systematic review of datadriven approaches to fault diagnosis and early warning. J. Intell. Manuf. 34, 8 (Sept. 2022), 3277–3304. DOI: 10.1007/s10845-022-02020-0

Shi Jin, Zhaobo Zhang, Krishnendu Chakrabarty, and Xinli Gu. 2016. Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis in a Core Router System. In 2016 IEEE International Test Conference (ITC). 1–10. DOI: 10.1109/TEST.2016.7805836

Mike Jones, Masrufa Bayesh, and Sharmin Jahan. [n. d.]. Unlocking Deeper Understanding: Leveraging Explainable AI for API Anomaly Detection Insights. In Proceedings of the 2024 16th International Conference on Machine Learning and Computing (New York, NY, USA, 2024-06-07) (ICMLC ’24). Association for Computing Machinery, 211–217. DOI: 10.1145/3651671.3651738

Georgios Kathareios, Andreea Anghel, Akos Mate, Rolf Clauberg, and Mitch Gusat. 2017. Catch It If You Can: Real-Time Network Anomaly Detection with Low False Alarm Rates. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). 924–929. DOI: 10.1109/ICMLA.2017.00-36

Cherry Khosla and Baljit Singh Saini. 2023. Proposed Framework for Performance Tuning in Enterprise Applications using Machine Learning. In 2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA). 800–806. DOI: 10.1109/ICECA58529.2023.10394833

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering. 2 (01 2007).

Van-Hoang Le and Hongyu Zhang. 2021. Log-Based Anomaly Detection Without Log Parsing. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). 492–504. DOI: 10.1109/ASE51524.2021.9678773

Jingwei Li, Yong Qi, and Lin Cai. 2018. A Hybrid Approach for Predicting Aging- Related Failures of Software Systems. In 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE). 96–105. DOI: 10.1109/SOSE.2018.00021

Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu. 2020. Swiss- Log: Robust and Unified Deep Learning Based Log Anomaly Detection for Diverse Faults. In 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). 92–103. DOI: 10.1109/ISSRE5003.2020.00018

Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. 2007. Failure Prediction in IBM BlueGene/L Event Logs. In Seventh IEEE International Conference on Data Mining (ICDM 2007). 583–588. DOI: 10.1109/ICDM.2007.46

Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong Xu, Jian-Guang Lou, Chenggang Li, YoujiangWu, Randolph Yao, Murali Chintalapati, and Dongmei Zhang. 2018. Predicting Node Failure in Cloud Service Systems. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (New York, NY, USA) (ESEC/FSE 2018). Association for Computing Machinery, 480–490. DOI: 10.1145/3236024.3236060

Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016. Log Clustering Based Problem Identification for Online Service Systems. In Proceedings of the 38th International Conference on Software Engineering Companion (New York, NY, USA) (ICSE ’16). Association for Computing Machinery, 102–111. DOI: 10.1145/2889160.2889232

Yuhang Lin, Olufogorehan Tunde-Onadele, Xiaohui Gu, Jingzhu He, and Hugo Latapie. 2022. SHIL: Self-Supervised Hybrid Learning for Security Attack Detection in Containerized Applications. In 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). 41–50. DOI: 10.1109/ACSOS55765.2022.00022

Jinyang Liu, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Cong Feng, Zengyin Yang, and Michael R. Lyu. 2023. Practical Anomaly Detection over Multivariate Monitoring Metrics for Online Services. In 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE). 36–45. DOI: 10.1109/ISSRE59848.2023.00045

Siyang Lu, XiangWei, Yandong Li, and LiqiangWang. 2018. Detecting Anomaly in Big Data System Logs Using Convolutional Neural Network. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). 151–158. DOI: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037

Siyang Lu, Xiang Wei, Bingbing Rao, Byungchul Tak, Long Wang, and Liqiang Wang. 2019. LADRA: Log-based Abnormal Task Detection and Root-Cause Analysis in Big Data Processing with Spark. 95 (2019), 392–403. DOI: 10.1016/j.future.2018.12.002

Joao Paulo Magalhaes and Luis Moura Silva. 2010. Detection of Performance Anomalies in Web-Based Applications. In 2010 Ninth IEEE International Symposium on Network Computing and Applications. 60–67. DOI: 10.1109/NCA.2010.15

Leonardo Mariani, Cristina Monni, Mauro Pezzé, Oliviero Riganelli, and Rui Xin. 2018. Localizing Faults in Cloud Systems. In 2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST). 262–273. DOI: 10.1109/ICST.2018.00034

Cristina Monni, Mauro Pezzè, and Gaetano Prisco. [n. d.]. An RBM Anomaly Detector for the Cloud. In 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST) (2019-04). 148–159. DOI: 10.1109/ICST.2019.00024

Kamini Nalavade and B. B. Meshram. 2014. Evaluation of K-Means Clustering for Effective Intrusion Detection and Prevention in Massive Network Traffic Data. 96, 7 (2014), 9–14. DOI: 10.5120/16804-6526

Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and Odej Kao. [n. d.]. Self-Supervised Log Parsing. In Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track (Cham, 2021), Yuxiao Dong, Dunja Mladenić, and Craig Saunders (Eds.). Springer International Publishing, 122–138. DOI: 10.1007/978-3-030-67667-4_8

Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. 2013. FChain: Toward Black-Box Online Fault Localization for Cloud Systems. In 2013 IEEE 33rd International Conference on Distributed Computing Systems. 21–30. DOI: 10.1109/ICDCS.2013.26

Hiroyuki Okamura, Junjun Zheng, and Tadashi Dohi. 2017. A Statistical Framework on Software Aging Modeling with Continuous-Time Hidden Markov Model. In 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS). 114–123. DOI: 10.1109/SRDS.2017.24

Husanbir S. Pannu, Jianguo Liu, and Song Fu. 2012. A Self-Evolving Anomaly Detection Framework for Developing Highly Dependable Utility Clouds. In 2012 IEEE Global Communications Conference (GLOBECOM). 1605–1610. DOI: 10.1109/GLOCOM.2012.6503343

M. Mazhar Rathore, Awais Ahmad, and Anand Paul. 2016. Real Time Intrusion Detection System for Ultra-High-Speed Big Data Environments. 72, 9 (2016), 3489–3510. DOI: 10.1007/s11227-015-1615-5

Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-Series Anomaly Detection Service at Microsoft. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (New York, NY, USA) (KDD ’19). Association for Computing Machinery, 3009–3017. DOI: 10.1145/3292500.3330680

Felix Salfner, Maren Lenk, and Miroslaw Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42, 3, Article 10 (March 2010), 42 pages. DOI: 10.1145/1670679.1670680

Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, and Karama Kanoun. 2016. Anomaly Detection and Root Cause Localization in Virtual Network Functions. In 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE). 196–206. DOI: 10.1109/ISSRE.2016.32

Christopher Schon, Niall Adams, and Marina Evangelou. 2017. Clustering and Monitoring Edge Behaviour in Enterprise Network Traffic. In 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). 31–36. DOI: 10.1109/ISI.2017.8004870

M. Omair Shafiq, Maryam Fekri, and Rami Ibrahim. [n. d.]. MapReduce Based Classification for Fault Detection in Big Data Applications. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (2017-12). 637–642. DOI: 10.1109/ICMLA.2017.00-89

Seyed Reza Shahamiri,Wan Mohd NasirWan Kadir, and Siti Zaiton Mohd-Hashim. 2009. A Comparative Study on Automated Software Test Oracle Methods. In 2009 Fourth International Conference on Software Engineering Advances. 140–145. DOI: 10.1109/ICSEA.2009.29

Taeshik Shon and Jongsub Moon. 2007. A Hybrid Machine Learning Approach to Network Anomaly Detection. 177, 18 (2007), 3799–3821. DOI: 10.1016/j.ins.2007.03.025

Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Ryan Wright, Alec Theriault, and DavidW. Archer. 2018. Feedback-Guided Anomaly Discovery via Online Optimization. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (New York, NY, USA) (KDD ’18). Association for Computing Machinery, 2200–2209. DOI: 10.1145/3219819.3220083

Daniel Sun, Min Fu, Liming Zhu, Guoqiang Li, and Qinghua Lu. 2016. Non-Intrusive Anomaly Detection With Streaming Performance Metrics and Logs for DevOps in Public Clouds: A Case Study in AWS. 4, 2 (2016), 278–289. DOI: 10.1109/TETC.2016.2520883

Tong Sun, Yan Liu, and Jing Chen. 2017. A Dynamic Network Anomaly Detection Method Based on Trend Analysis. In 2017 3rd IEEE International Conference on Computer and Communications (ICCC). 405–411. DOI: 10.1109/CompComm.2017.8322580

Pratik Thantharate. 2023. IntelligentMonitor: Empowering DevOps Environments with Advanced Monitoring and Observability. In 2023 International Conference on Information Technology (ICIT). 800–805. DOI: 10.1109/ICIT58056.2023.10226123

Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J. Leung, Manuel Egele, and Ayse K. Coskun. [n. d.]. Online Diagnosis of Performance Variation in HPC Systems Using Machine Learning. 30, 4 ( [n. d.]), 883–896. DOI: 10.1109/TPDS.2018.2870403

Hironori Uchida, Keitaro Tominaga, Hideki Itai, Yujie Li, and Yoshihisa Nakatoh. 2024. Improving Log Anomaly Detection via Spatial Pooling: Combining SPClassifier with Ensemble Method. Cognitive Robotics 4 (Jan. 2024), 217–227. DOI: 10.1016/j.cogr.2024.10.001

Byoung uk Kim and Salim Hariri. 2007. Anomaly-Based Fault Detection System in Distributed System. In 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA 2007). 782–789. DOI: 10.1109/SERA.2007.55

S. Wang, M. Lu, S. Kong, and J. Ai. [n. d.]. A Dynamic Anomaly Detection Approach Based on Permutation Entropy for Predicting Aging-Related Failures. 22, 11 ( [n. d.]), 1–18. DOI: 10.3390/e22111225

Dangwei Wu, Beijun Shen, Yuting Chen, He Jiang, and Lei Qiao. 2022. Automatically Repairing Tensor Shape Faults in Deep Learning Programs. Information and Software Technology 151 (Nov. 2022), 107027. DOI: 10.1016/j.infsof.2022.107027

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009. Detecting Large-Scale System Problems by Mining Console Logs. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (New York, NY, USA) (SOSP ’09). Association for Computing Machinery, 117–132. DOI: 10.1145/1629575.1629587

Aymen Yahyaoui, Takoua Abdellatif, and Rabah Attia. 2019. Hierarchical Anomaly Based Intrusion Detection and Localization in IoT. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). 108–113. DOI: 10.1109/IWCMC.2019.8766574

Aymen Yahyaoui, Haithem Lakhdhar, Takoua Abdellatif, and Rabah Attia. [n. d.]. Machine Learning Based Network Intrusion Detection for Data Streaming IoT Applications. In 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPDWinter) (2021-01). 51–56. DOI: 10.1109/SNPDWinter52325.2021.00019

Nong Ye and Qiang Chen. 2001. An Anomaly Detection Technique Based on a Chi-Square Statistic for Detecting Intrusions into Information Systems. 17, 2 (2001), 105–112. DOI: 10.1002/qre.392

Li Yu and Zhiling Lan. [n. d.]. A Scalable, Non-Parametric Method for Detecting Performance Anomaly in Large Scale Computing. 27, 7 ( [n. d.]), 1902–1914. DOI: 10.1109/TPDS.2015.2475741

Bo Zhang, Hongyu Zhang, Pablo Moscato, and Aozhong Zhang. 2020. Anomaly Detection via Mining Numerical Workflow Relations from Logs. In 2020 International Symposium on Reliable Distributed Systems (SRDS). 195–204. DOI: 10.1109/SRDS51746.2020.00027

Lu Zhang, Reginald Cushing, prefix=de useprefix=false family=Laat, given=Cees, and Paola Grosso. 2021. A Real-Time Intrusion Detection System Based on OCSVM for Containerized Applications. In 2021 IEEE 24th International Conference on Computational Science and Engineering (CSE). 138–145. DOI: 10.1109/CSE53436.2021.00029

Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He, Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dongmei Zhang. 2019. Robust Log-Based Anomaly Detection on Unstable Log Data. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (New York, NY, USA) (ESEC/FSE 2019). Association for Computing Machinery, 807–817. DOI: 10.1145/3338906.3338931

Wujie Zheng, Haochuan Lu, Yangfan Zhou, Jianming Liang, Haibing Zheng, and Yuetang Deng. [n. d.]. iFeedback: Exploiting User Feedback for Real-Time Issue Detection in Large-Scale Online Service Systems. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE) (2019-11). 352–363. DOI: 10.1109/ASE.2019.00041
Publicado
10/11/2025
RODRIGUES, Paulo Ricardo Fernandes; LELLI, Valéria. Systematic Mapping of Fault Monitoring Techniques Based on Data Mining. In: BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB (WEBMEDIA), 31. , 2025, Rio de Janeiro/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 686-698. DOI: https://doi.org/10.5753/webmedia.2025.16105.

Artigos mais lidos do(s) mesmo(s) autor(es)

<< < 1 2