A WhatsApp-Based Application for Automatic Data Collection and Crime Monitoring in Belo Horizonte

  • Gustavo Silva da Fonseca UFOP
  • Guilherme S. Patrício UFOP
  • Carlos H. G. Ferreira UFOP
  • Alexandre M. de Sousa UFOP

Resumo


This work presents the development of a crime monitoring system for Belo Horizonte based on the automatic collection of messages from public WhatsApp groups. The system adopts a modular and scalable architecture, integrating services for filtering, structuring and storing data in a hierarchical database that supports queries by region, neighborhood and time period. Crimes are identified in two steps: (1) an initial filter detects potential crime-related messages using a predefined dictionary of keywords, and (2) a Machine Learning model classifies the messages with higher accuracy. This automated pipeline ensures continuous data processing without manual intervention and provides up-to-date geographic information on crimes. The proposed framework demonstrates the feasibility of using instant messaging platforms for real-time crime monitoring and offers scalability and adaptability for application in other cities and related data monitoring contexts.
Palavras-chave: Architecture, NestJS, MongoDB, Firestore, Integration, Automatic Data Collection, WhatsApp, Crime Monitoring

Referências

Somayyeh Aghababaei and Masoud Makrehchi. 2018. Mining Twitter data for crime trend prediction. Intelligent Data Analysis 22, 1 (2018), 117–141.

L. G. A. Alves, H. V. Ribeiro, and F. A. Rodrigues. 2020. Crime prediction through urban metrics and statistical learning. Physica A: Statistical Mechanics and its Applications 540 (2020), 123–138.

Cristian Aquino. 2021. Como a tecnologia pode ajudar a segurança pública nas cidades. [link]. Accessed: 2025-04-28.

Andriy Burkov. 2019. The hundred-page machine learning book. Vol. 1. Andriy Burkov Quebec City, QC, Canada.

Teresa Pires do Rio Caldeira. 2000. Cidade de muros: crime, segregação e cidadania em São Paulo. Editora 34, São Paulo, Brasil.

X. Chen and Y. Liu. 2023. Crime hotspot prediction using social media data and machine learning: A case study in New York City. Computers, Environment and Urban Systems 99 (2023), 102–115.

F. Ferreira, J. Duarte, and W. Ugulino. 2022. Automated Statistics Extraction of Public Security Events Reported Through Microtexts on Social Networks. In Proc. of the XVIII SBSI (Curitiba, Brazil) (SBSI ’22). ACM, New York, NY, USA.

S. Kumar and S. K. Singh. 2022. Real-time crime detection using social media analytics: A deep learning approach. Journal of Big Data 9, 1 (2022), 1–20.

P. Lira. 2017. Geografia do crime e arquitetura do medo: uma análise dialética da criminalidade violenta e das instâncias urbanas. Letra Capital Editora LTDA, Vitória, ES, Brasil.

M. S. Md Suhaimin, M. H. A. Hijazi, E. G. Moung, P. N. E. Nohuddin, S. Chua, and F. Coenen. 2023. Social media sentiment analysis and opinion mining in public security: Taxonomy, trend analysis, issues and future directions. Journal of King Saud University - Computer and Information Sciences 35, 9 (2023), 101776.

M. S. Mredula, N. Dey, Md. S. Rahman, I. Mahmud, and Y.-Z. Cho. 2022. A Review on the Trends in Event Detection by Analyzing Social Media Platforms’ Data. Sensors 12 (2022).

M. Nascimento, V. Silva, G. Souza, K. Lima, E. Araújo, E. Souza, J. Turet, and V. Carvalho. 2025. Extração de Notícias sobre Segurança Pública para Desenvolvimento de Corpora em português: uma análise preliminar em cidades do nordeste brasileiro. In Anais do VI WICS (Maceió/AL). SBC, Porto Alegre, RS, Brasil.

Gabriel Peres Nobre, Carlos HG Ferreira, and Jussara M Almeida. 2022. A hierarchical network-oriented analysis of user participation in misinformation spread on WhatsApp. Information Processing & Management 59, 1 (2022), 102757.

R.I. Ogie, S. James, A. Moore, T. Dilworth, M. Amirghasemi, and J. Whittaker. 2022. Social media use in disaster recovery: A systematic literature review. International Journal of Disaster Risk Reduction 70 (2022), 102783.

L. A. R. Paixão. 2009. O impacto da violência no preço dos imóveis comerciais de Belo Horizonte: uma abordagem hedônica. Economia Aplicada 13 (2009), 125–152.

B. A. Pires, L. F. Machado, A. A. Lacerda, andW. de Oliveira. 2023. A importância de grupos de WhatsApp na detecção de eventos do mundo real. In Anais do Simpósio Brasileiro de Sistemas Colaborativos (SBSC). SBC, Porto Alegre.

B. R. Prathap and K. Ramesha. 2018. Twitter Sentiment for Analysing Different Types of Crimes. In 2018 IC3IoT.

Alina Ristea, Martin A Andresen, and Michael Leitner. 2018. Using tweets to understand changes in the spatial crime distribution for hockey events in Vancouver. The Canadian Geographer 62, 3 (2018), 338–351.

O. R Venâncio, G. H. S. Gonçalves, C. H. G. Ferreira, and A. P. C. da Silva. 2024. Evidências de disseminação de conteúdo no Telegram durante o ataque aos órgãos públicos brasileiros em 2023. In WebMedia. SBC, 385–389.

Lara Vomfell, Wolfgang Karl Hardle, and Stefan Lessmann. 2018. Improving crime count forecasts using Twitter and taxi data. Decision Support Systems 113 (2018), 73–85.

Matthew L Williams, Pete Burnap, and Luke Sloan. 2017. Crime sensing with big data: The affordances and limitations of using open-source communications to estimate crime patterns. The British Journal of Criminology 57, 2 (2017), 320–340.
Publicado
10/11/2025
FONSECA, Gustavo Silva da; PATRÍCIO, Guilherme S.; FERREIRA, Carlos H. G.; SOUSA, Alexandre M. de. A WhatsApp-Based Application for Automatic Data Collection and Crime Monitoring in Belo Horizonte. In: WORKSHOP DE FERRAMENTAS E APLICAÇÕES - SIMPÓSIO BRASILEIRO DE SISTEMAS MULTIMÍDIA E WEB (WEBMEDIA), 31. , 2025, Rio de Janeiro/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 91-94. ISSN 2596-1683. DOI: https://doi.org/10.5753/webmedia_estendido.2025.16398.