Decoding the NFT Market: The Influence of Network Connections and Transactions on Asset Value
Abstract
The market for Non-Fungible Tokens (NFTs) continues to evolve, yet it still lacks robust methodologies to estimate the future value of its assets. Unlike traditional financial markets, NFT pricing is challenged by intangible factors such as the artistic nature of the items and the influence of social and transactional networks among buyers and sellers. This study investigates whether the structural position of participants in the transaction network can serve as a relevant predictor of the future value of NFTs. To this end, we reconstructed the NFT trading network for the period 2020–2021, extracted both structural and transactional metrics of the participants, and applied supervised machine learning models, including deep neural networks. The results demonstrate the feasibility of the proposed approach, achieving 74% accuracy and a global F1-Score of 72%. Interpretability analysis using SHAP values revealed that, in addition to historical price averages, network metrics such as degree and neighborhood significantly contribute to prediction. These findings highlight the role of network dynamics in NFT valuation and point toward promising directions for more transparent and evidence-based pricing methodologies.
Keywords:
Tokens Não-Fungíveis, Análise de Redes, Aprendizado de Máquina, Avaliação de Ativos
References
Ayana T Aspembitova, Ling Feng, and Lock Yue Chew. 2021. Behavioral structure of users in cryptocurrency market. Plos one 16, 1 (2021), e0242600.
Andriy Burkov. 2019. The hundred-page machine learning book. Vol. 1. Andriy Burkov Quebec City, QC, Canada.
Simone Casale-Brunet, Paolo Ribeca, Patrick Doyle, and Marco Mattavelli. 2021. Networks of Ethereum Non-Fungible Tokens: A graph-based analysis of the ERC-721 ecosystem. In 2021 IEEE International Conference on Blockchain (Blockchain). IEEE, 188–195.
Giovanni Colavizza. 2023. Seller-buyer networks in NFT art are driven by preferential ties. Frontiers in Blockchain 5 (2023), 1073499.
Davide Costa, Lucio La Cava, and Andrea Tagarelli. 2023. Show me your NFT and I tell you how it will perform: Multimodal representation learning for NFT selling price prediction. In Proceedings of the ACM Web Conference 2023 (Austin, TX, USA) (WWW ’23). Association for Computing Machinery, New York, NY, USA, 1875–1885. DOI: 10.1145/3543507.3583520
Samuel de Oliveira Ribeiro, Dayan Ramos Gomes, Emanuel Coutinho, and Glauber Dias Gonçalves. 2023. Análise de Características Estruturais de Tokens não Fungíveis no Ethereum. In Anais do VI Workshop em Blockchain: Teoria, Tecnologias e Aplicações. SBC, 1–14.
Lucio La Cava, Davide Costa, and Andrea Tagarelli. 2025. Visually wired NFTs: Exploring the role of inspiration in non-fungible tokens. ACM Transactions on the Web 19, 2 (2025), 1–18.
Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. [link]
Alex Murray, Dennie Kim, and Jordan Combs. 2023. The promise of a decentralized internet: What is Web3 and how can firms prepare? Business horizons 66, 2 (2023), 191–202.
Matthieu Nadini, Laura Alessandretti, Flavio Di Giacinto, Mauro Martino, Luca Maria Aiello, and Andrea Baronchelli. 2021. Mapping the NFT revolution: market trends, trade networks, and visual features. Scientific reports 11, 1 (2021), 20902.
Mark Ng, Monica Law, Chi-Bo Wong, and Michael Liang. 2025. Drivers of non-fungible token (NFT) investment intention: the roles of innovativeness, knowledge, subjective norms and perceived value. Journal of Electronic Business & Digital Economics (2025).
Renana Peres, Martin Schreier, David A Schweidel, and Alina Sorescu. 2023. Blockchain meets marketing: Opportunities, threats, and avenues for future research. International Journal of Research in Marketing 40, 1 (2023), 1–11.
Samuel Ribeiro, Dayan Gomes, Nara Andrade, Emanuel Miranda, and Glauber Gonçalves. 2024. Classificação de Coleções de NFTs Explorando Metadados e Aprendizagem de Máquina. In Anais do II Colóquio em Blockchain e Web Descentralizada (Brasília/DF). SBC, Porto Alegre, RS, Brasil, 50–55. DOI: 10.5753/cblockchain.2024.3172
Rohit Saxena, Deepak Arora, and Vishal Nagar. 2023. Classifying transactional addresses using supervised learning approaches over Ethereum blockchain. Procedia Computer Science 218 (2023), 2018–2025.
Kishore Vasan, Milán Janosov, and Albert-László Barabási. 2022. Quantifying NFT-driven networks in crypto art. Scientific reports 12, 1 (2022), 2769.
Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. 2021. Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges. arXiv preprint arXiv:2105.07447 (2021).
Sissi Xiaoxiao Wu, Zixian Wu, Shihui Chen, Gangqiang Li, and Shengli Zhang. 2021. Community detection in blockchain social networks. Journal of Communications and Information Networks 6, 1 (2021), 59–71.
Guangquan Xu, Bingjiang Guo, Chunhua Su, Xi Zheng, Kaitai Liang, Duncan S Wong, and Hao Wang. 2020. Am I eclipsed? A smart detector of eclipse attacks for Ethereum. Computers & Security 88 (2020), 101604.
Javad Zarrin, Hao Wen Phang, Lakshmi Babu Saheer, and Bahram Zarrin. 2021. Blockchain for decentralization of internet: prospects, trends, and challenges. Cluster Computing 24, 4 (2021), 2841–2866.
Yiqing Zhu. 2023. Classificação das carteiras na Blockchain Ethereum usando machine learning. Ph.D. Dissertation. Instituto Superior de Economia e Gestão.
Andriy Burkov. 2019. The hundred-page machine learning book. Vol. 1. Andriy Burkov Quebec City, QC, Canada.
Simone Casale-Brunet, Paolo Ribeca, Patrick Doyle, and Marco Mattavelli. 2021. Networks of Ethereum Non-Fungible Tokens: A graph-based analysis of the ERC-721 ecosystem. In 2021 IEEE International Conference on Blockchain (Blockchain). IEEE, 188–195.
Giovanni Colavizza. 2023. Seller-buyer networks in NFT art are driven by preferential ties. Frontiers in Blockchain 5 (2023), 1073499.
Davide Costa, Lucio La Cava, and Andrea Tagarelli. 2023. Show me your NFT and I tell you how it will perform: Multimodal representation learning for NFT selling price prediction. In Proceedings of the ACM Web Conference 2023 (Austin, TX, USA) (WWW ’23). Association for Computing Machinery, New York, NY, USA, 1875–1885. DOI: 10.1145/3543507.3583520
Samuel de Oliveira Ribeiro, Dayan Ramos Gomes, Emanuel Coutinho, and Glauber Dias Gonçalves. 2023. Análise de Características Estruturais de Tokens não Fungíveis no Ethereum. In Anais do VI Workshop em Blockchain: Teoria, Tecnologias e Aplicações. SBC, 1–14.
Lucio La Cava, Davide Costa, and Andrea Tagarelli. 2025. Visually wired NFTs: Exploring the role of inspiration in non-fungible tokens. ACM Transactions on the Web 19, 2 (2025), 1–18.
Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. [link]
Alex Murray, Dennie Kim, and Jordan Combs. 2023. The promise of a decentralized internet: What is Web3 and how can firms prepare? Business horizons 66, 2 (2023), 191–202.
Matthieu Nadini, Laura Alessandretti, Flavio Di Giacinto, Mauro Martino, Luca Maria Aiello, and Andrea Baronchelli. 2021. Mapping the NFT revolution: market trends, trade networks, and visual features. Scientific reports 11, 1 (2021), 20902.
Mark Ng, Monica Law, Chi-Bo Wong, and Michael Liang. 2025. Drivers of non-fungible token (NFT) investment intention: the roles of innovativeness, knowledge, subjective norms and perceived value. Journal of Electronic Business & Digital Economics (2025).
Renana Peres, Martin Schreier, David A Schweidel, and Alina Sorescu. 2023. Blockchain meets marketing: Opportunities, threats, and avenues for future research. International Journal of Research in Marketing 40, 1 (2023), 1–11.
Samuel Ribeiro, Dayan Gomes, Nara Andrade, Emanuel Miranda, and Glauber Gonçalves. 2024. Classificação de Coleções de NFTs Explorando Metadados e Aprendizagem de Máquina. In Anais do II Colóquio em Blockchain e Web Descentralizada (Brasília/DF). SBC, Porto Alegre, RS, Brasil, 50–55. DOI: 10.5753/cblockchain.2024.3172
Rohit Saxena, Deepak Arora, and Vishal Nagar. 2023. Classifying transactional addresses using supervised learning approaches over Ethereum blockchain. Procedia Computer Science 218 (2023), 2018–2025.
Kishore Vasan, Milán Janosov, and Albert-László Barabási. 2022. Quantifying NFT-driven networks in crypto art. Scientific reports 12, 1 (2022), 2769.
Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. 2021. Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges. arXiv preprint arXiv:2105.07447 (2021).
Sissi Xiaoxiao Wu, Zixian Wu, Shihui Chen, Gangqiang Li, and Shengli Zhang. 2021. Community detection in blockchain social networks. Journal of Communications and Information Networks 6, 1 (2021), 59–71.
Guangquan Xu, Bingjiang Guo, Chunhua Su, Xi Zheng, Kaitai Liang, Duncan S Wong, and Hao Wang. 2020. Am I eclipsed? A smart detector of eclipse attacks for Ethereum. Computers & Security 88 (2020), 101604.
Javad Zarrin, Hao Wen Phang, Lakshmi Babu Saheer, and Bahram Zarrin. 2021. Blockchain for decentralization of internet: prospects, trends, and challenges. Cluster Computing 24, 4 (2021), 2841–2866.
Yiqing Zhu. 2023. Classificação das carteiras na Blockchain Ethereum usando machine learning. Ph.D. Dissertation. Instituto Superior de Economia e Gestão.
Published
2025-11-10
How to Cite
ANDRADE, Nara Raquel Dias; CARVALHO, Oscar William N. de; FERREIRA, Carlos H. G.; GONÇALVES, Glauber D..
Decoding the NFT Market: The Influence of Network Connections and Transactions on Asset Value. In: BRAZILIAN WORKSHOP ON WEB3 SYSTEMS - BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB (WEBMEDIA), 31. , 2025, Rio de Janeiro/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 301-305.
ISSN 2596-1683.
DOI: https://doi.org/10.5753/webmedia_estendido.2025.16386.
