A Study of Dropout in the Computing Licentiate Course at the University of Brasília

  • Richard Wallan Paulino de Sousa UnB
  • Juliana Betini Fachini-Gomes UnB
  • Maristela Holanda UnB
  • Maria Teresa Costa Leão UnB

Abstract


The Computing Licenciature major at the University of Brasília (UnB), similar to other Computing courses in Brazil, is impacted by dropouts. Therefore, the objective of this work is to answer the following research question “What academic and social factors impact the probability of dropping out of the Computing Degree course at the University of Brasília?”. The data used for this study corresponds to the academic trajectory of undergraduate students in Computing from 2012/2 to 2019/2. The survival analysis methodology was the technique used, more specifically the Log-Normal regression model. The model proved to be robust in the analysis of residues and in presenting results consistent with the evasion literature. The results of this article can help in the development of educational policies and strategies to reduce the number of dropouts in the LC course at UnB.

References

Bland, J. M. and Altman, D. G. (1998). Survival probabilities (the kaplan-meier method). Bmj, 317(7172):1572–1580.

Calixto, C. (2015). Análise das causas de evasão discente no curso de licenciatura em computação: um estudo da ufpb virtual no formato uab. Revista Tecnologias na Educação, 7(12):1–13.

Cox, D. R. and Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30(2):248–265.

Duran, R., Bim, S. A., Gimenes, I., Ribeiro, L., and Correia, R. C. M. (2023). Potential factors for retention and intent to drop-out in brazilian computing programs. ACM Transactions on Computing Education, 23(3):1–33.

Duran, R. a. (2024). Evasão nos cursos de graduação em computação no brasil. In ACM Transactions on Computing Education, pages 1–33. SBC.

Fonseca, J. R., Friswell, M. I., Mottershead, J. E., and Lees, A. W. (2005). Uncertainty identification by the maximum likelihood method. Journal of Sound and Vibration, 288(3):587–599.

Fritsch, R., da Rocha, C. S., and Vitelli, R. F. (2015). A evasão nos cursos de graduação em uma instituição de ensino superior privada. Revista Educação em Questão, 52(38):81–108.

Kalbfleisch, J. D. and Prentice, R. L. (2011). The statistical analysis of failure time data. John Wiley & Sons.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282):457–481.

Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons.

Prietch, S. S. and Pazeto, T. A. (2010). Estudo sobre a evasão em um curso de licenciatura em informática e considerações para melhorias. WEIBASE, Maceió/AL.

Ribeiro, I. M., Correia, W. F. M., and Campos, F. (2021). Setores acadêmicos que interferem na satisfação do aluno no ensino superior. Acta Scientiarum. Education, 43:e50121–e50121.

Souza, O., Morais, P., and Júnior, F. S. (2015). Um estudo sobre a evasão no curso de licenciatura em informática do ifrn–campus natal–zona norte. In Anais do XXIII Workshop sobre Educação em Computação, pages 216–225. SBC.

Vasconcelos, V. and Andrade, E. (2018). Análise da evasão de alunos na licenciatura em computação. In Anais do XXVI Workshop sobre Educação em Computação, Porto Alegre, RS, Brasil. SBC.
Published
2024-07-21
SOUSA, Richard Wallan Paulino de; FACHINI-GOMES, Juliana Betini; HOLANDA, Maristela; LEÃO, Maria Teresa Costa. A Study of Dropout in the Computing Licentiate Course at the University of Brasília. In: WORKSHOP ON COMPUTING EDUCATION (WEI), 32. , 2024, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 715-725. ISSN 2595-6175. DOI: https://doi.org/10.5753/wei.2024.2884.