5 Minutos de Programação em Exibições
Resumo
Para popularizar a computação de maneira lúdica em feiras científicas, criamos um estande para desmistificar a computação física e, ao mesmo tempo, motivar e estimular o interesse pela computação. Foram projetados dois robôs programáveis interativos, em forma de minion (um deles com mais de um metro de altura). Com ambos, pode-se mostrar como é fácil e interessante criar programas em poucos minutos utilizando uma linguagem visual como Scratch 2 ou Snap!. O hardware consiste em uma placa microcontrolada Arduino Nano e um conjunto de sensores e atuadores. A experiência na SEPEX 2015, com mais de 4 mil visitantes, mostra que a oferta de tais estandes ao público em geral pode ser uma alternativa envolvente para popularizar a computação com um custo baixo.
Referências
Arduino (2016). [link]. Dezembro.
Batista, E. J. S., et al. (2015). Utilizando o Scratch como ferramenta de apoio para desenvolver o raciocínio lógico das crianças do ensino básico de uma forma multidisciplinar. In: Anais do XXII Workshop sobre Educação em Computação, Recife/PE.
Benitti, F. B. V. (2012) “Exploring the educational potential of robotics in schools: A systematic review”. Computers & Education, 58(3), p. 978-988.
Bers, M. U. (2007) “Project InterActions: A Multigenerational Robotic Learning Environment.” Journal on Science Education and Technology, 16, p. 537–552.
Bers, M. U. and Urrea, C. (2000) “Technological prayers: parents and children exploring robotics and values”. In: Robots for kids: exploring new technologies for learning. Edited by A. Druin & J. Hendler.
Blikstein, P. (2013) “Gears of Our Childhood: Constructionist Toolkits, Robotics, and Physical Computing, Past and Future”. (IDC), New York, NY, USA.
CSTA Standards Task Force (2011). “CSTA K-12 Computer Science Standards”. New York, NY, USA.
Eguchi, A. (2010) “What is educational robotics? Theories behind it and practical implementation”. In: Proc. of the Int. Conf. of the Society for Information Technology & Teacher Education, Chesapeake, VA, USA, p. 4006-4014.
Falk, J.H., Dierking, L.D., Foutz, S. (eds.) (2007). In Practice: Museums as Learning Institutions. AltaMira Press, Lanham, MD.
Gresse von Wangenheim, C., von Wangenheim, A., Pacheco, F. S., Hauck, J. C. R., Ferreira, M. N. F. Teaching Physical Computing in Family Workshops. ACM Inroads, 8(1), 48-51, 2017.
Harvey, B. and Mönig, J. (2015). “Snap! (Build Your Own Blocks) 4.0”. [link] Novembro.
Horn, M.S., Solovey, E. T., Jacob, R.J.K. (2008). Tangible Programming and Informal Science Learning: Making TUIs Work for Museums. In Proceedings of the 7th International Conference on Interaction Design and Children, Chicago, IL/USA.
Humphrey, T. et al. (2005). Fostering Active Prolonged Engagement: The Art of Creating APE Exhibits. Left Coast Press.
Karim, M. E., Lemaignan, S., Mondada, A. (2015) “Review: Can robots reshape K-12 STEM education?”. In: Proc. of the 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts, Lyon, France.
Maton-Howarth, M. (1990). “Knowing objects through an alternative learning system”. In S. Pearce (ed.) Objects of Knowledge. London: The Athlone Press, 174-203.
Mitnik, R., Nussbaum, M., and Soto, A. (2008) ”An autonomous educational mobile robot mediator”. Autonomous Robots, 25(4), p. 367-382.
National Research Council (2009) Learning science in informal environments: People, places, and pursuits. The National Academies Press, Washington, DC.
O'Sullivan, D. and Igoe, T. “Physical Computing – Sensing and Controlling the Physical World with Computers, Boston”. MA: Thomson Course Technology. 2004.
Padir, T. and Chernova, S. (2013) “Guest Editorial - Special Issue on Robotics Education”. IEEE Transactions on Education, 56(1), p. 1-2.
Pekarik, A. et al. (1999). Exploring Satisfying Experiences in Museums. Curator: The Museum Journal, 42(2), 152-173.
Pinho, G. et al. (2016). Pensamento Computacional no Ensino Fundamental: Relato de Atividade de Introdução a Algoritmos. In: Anais do XXII Workshop sobre Educação em Computação, Uberlândia/MG.
Physical Computing with Raspberry Pi. [link]
Raspberrypi (2016). [link]. Dezembro.
Robocup Junior (2016). [link]. Dezembro.
Rusk, N. et al. (2008) “New pathways into robotics: Strategies for broadening participation”. Journal of Science Education and Technology, 17(1), p. 59-69.
Scratch (2007). Scratch - Imagine, Program, Share. [link]. Dezembro.
Silva de Oliveira, M. L. et al. (2014) Ensino de lógica de programação no ensino fundamental utilizando o Scratch: um relato de experiência. In: Anais do XXII Workshop sobre Educação em Computação, Brasília/DF.
Silva, T. R. et al. (2016). Um relato de experiência da aplicação de videoaulas de programação de jogos digitais para alunos da educação básica. In: Anais do XXII Workshop sobre Educação em Computação, Uberlândia/MG.
Ucko, D. A. (1985). Science Literacy and Science Musem Exhibits. Curator – the Museum Journal, 28(4), 287–300.
Vandevelde, C. et al. (2013) “Overview of technologies for building robots in the classroom”. In: Proc. of the Int. Conference on Robotics in Education, Lodz, Poland, p. 122-130.
Yanco, H. A. et al. (2007) “Artbotics: Combining Art and Robotics to Broaden Participation in Computing”. In: Proc. of the AAAI Spring Symposium: Semantic Scientific Knowledge Integration.
Yorinks, A. (2013). MrYsLab/s2a_fm. [link]. Novembro.