Uso de Mineração de Dados para o Auxílio de Produção de Material Didático em Disciplinas de Algoritmos
Resumo
Algoritmo pode ser definido como uma sequência de ações executáveis para a obtenção de uma determinada solução buscando a obtenção da solução de um problema. A disciplina de Algoritmos, é o primeiro contato dos alunos com a área de Programação de Computadores e, além disso, a base para a Computação. Pórem, para muitos alunos a implementação de algoritmos é um desafio devido a dificuldade de ordem técnica, detalhes de linguagem de programação ou ainda configuração dos ambientes de desenvolvimendo. Diante dessas dificuldades, podem ocorrer casos nos quais o professor não consegue identificar a frequência dessas dificuldades, levando os alunos a uma maior frustração na aprendizagem dos conceitos subjacentes da disciplina. Este trabalho propõe a criação de um sistema de recomendação de conteúdo técnico programático. Este sistema tem como parte essencial um modelo gerado a partir da mineração da base de dados do StackOverflow. Alguns resultados preliminares deste modelo já foram obtidos com o nível de acurácia de treinamento maior que 90%.
Referências
Ahmadzadeh, M., Elliman, D., and Higgins, C. (2005). An Analysis of Patterns of Debug- ging among novice Computer Science Students. In ACM SIGCSE Bulletin, volume 37, pages 84–88. ACM.
Balaniuk, R., do Prado, H. A., da Veiga Guadagnin, R., Ferneda, E., and Cobbe, P. R. (2011). Predicting Evasion Candidates in Higher Education Institutions. In Internati- onal Conference on Model and Data Engineering, pages 143–151. Springer.
Berssanette, J. H. et al. (2016). Ensino de Programação de Computadores: uma Proposta de Abordagem Prática Baseada em ausubel. Master’s thesis, Universidade Tecnológica Federal do Paraná.
Bryce, R. (2011). Bug wars: a Competitive Exercise to Find Bugs in Code. Journal of Computing Sciences in Colleges, 27(2):43–50.
Bryce, R. C., Cooley, A., Hansen, A., and Hayrapetyan, N. (2010). A One Year Empirical Study of Student Programming Bugs. In 2010 IEEE Frontiers in Education Conference (FIE), pages F1G–1. IEEE.
Cardoso, D. C., Cristiano, M. P., and Arent, C. O. (2009). Development of New Didactic Materials for Teaching Science and Biology: the Importance of the New Education Practices. OnLine Journal of Biological Sciences, 9(1):1–5.
Delavari, N., Phon-Amnuaisuk, S., and Beikzadeh, M. R. (2008). Data Mining Applica- tion in Higher Learning Institutions. Informatics in Education, 7(1):31–54.
Fatima, D., Fatima, S., and Prasad, D. A. K. (2015). A Survey on Research Work in Educational Data Mining. IOSR Journal of Computer Engineering (IOSR-JCE), 17.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Kno- wledge Discovery in Databases. AI magazine, 17(3):37.
Fiebrink, R. (2019). Machine Learning Education for Artists, Musicians, and Other Cre- ative Practitioners. ACM Transactions on Computing Education.
Francisco, R. E., Ambrósio, A. P., et al. (2017). Grau de Dificuldade de Problemas de Programação Introdutória: Uma Revisão Sistemática da Literatura. In 25 o Workshop sobre Educação em Computação (WEI 2017), volume 25. SBC.
Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al. (2013). De- vise: A Deep Visual-Semantic Embedding Model. In Advances in neural information processing systems, pages 2121–2129.
Gaber, I. and Kirsh, A. (2018). The Effect of Reporting Known Issues on Students’ Work. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education, pages 74–79. ACM.
Gladcheff, A. P., Sanches, R., and da Silva, D. M. (2002). Um Instrumento de Avaliação de Qualidade de Software Educacional: como elaborá-lo. Pensamento & Realidade. Revista do Programa de Estudos Pós-Graduados em Administração-FEA. ISSN 2237- 4418, 11.
Guedes, L. R. and Paterno, A. S. (2018). BrC: Proposta de uma Biblioteca em Português para Ensino de Programação em Linguagem C. In 26 o Workshop sobre Educação em Computação (WEI 2018), volume 26, Porto Alegre, RS, Brasil. SBC.
Hristova, M., Misra, A., Rutter, M., and Mercuri, R. (2003). Identifying and Correcting java Programming Errors for Introductory Computer Science Students. ACM SIGCSE Bulletin, 35(1):153–156.
Machado, A. S. (2016). Uso de Softwares Educacionais, Objetos de Aprendizagem e Simulações no Ensino de Química. Revista Química Nova na Escola, 38(2):104–111.
McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., and Zander, C. (2008). Debugging: a Review of the Literature from an Educational Perspective. Computer Science Education, 18(2):67–92.
Melo, L. B., Costa, P. R. S., de Paiva Onofre Filho, M., Lordão, F. A. F., and de Almeida, L. C. (2018). Uma Metodologia para Implementação da Disciplina Informática Básica em Cursos Técnicos Integrados ao Ensino Médio. In 26 o Workshop sobre Educação em Computação (WEI 2018), volume 26, Porto Alegre, RS, Brasil. SBC.
Nandeshwar, A., Menzies, T., and Nelson, A. (2011). Learning Patterns of University Student Retention. Expert Systems with Applications, 38(12):14984–14996.
Nemoto, T. and Beglar, D. (2014). Likert-scale Questionnaires. In Japan Association for Language Teaching (JALT) 2013 Conference Proceedings, pages 1 – 8.
Robins, A., Haden, P., and Garner, S. (2006). Problem Distributions in a cs1 Course. In Proceedings of the 8th Australasian Conference on Computing Education-Volume 52, pages 165–173. Australian Computer Society, Inc.
Rocha, P. S., Ferreira, B., Monteiro, D., Nunes, D. d. S. C., and do Nascimento Góes, H. C. (2010). Ensino e Aprendizagem de Programação: Análise da Aplicação de Proposta Metodológica Baseada no Sistema Personalizado de Ensino. RENOTE, 8(3).
Romero, C. and Ventura, S. (2010). Educational Data Mining: a Review of the State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6):601–618.
Sommerville, I. (2010). Software Engineering. Addison-Wesley, Harlow, England, 9 edition.
Spohrer, J. C., Soloway, E., and Pope, E. (1985). A Goal/Plan Analysis of Buggy pascal Programs. Human–Computer Interaction, 1(2):163–207.
Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. ed. Addison-Wesley Longman Publishing Co., Inc.
Tang, C., Lau, R. W., Li, Q., Yin, H., Li, T., and Kilis, D. (2000). Personalized Courseware Construction Based on Web Data Mining. In Web Information Systems Engineering, 2000. Proceedings of the First International Conference on, volume 2, pages 204–211. IEEE.
Usai, A., Pironti, M., Mital, M., and Aouina Mejri, C. (2018). Knowledge Discovery out of Text Data: a Systematic Review via Text Mining. Journal of Knowledge Manage- ment, 22(7):1471–1488.
Van Solingen, R., Basili, V., Caldiera, G., and Rombach, H. D. (2002). Goal Question Metric (GQM) approach. Encyclopedia of software engineering.
Winne, P. H. and Baker, R. S. (2013). The Potentials of Educational Data Mining for Researching Metacognition, Motivation and Self-Regulated Learning. JEDM| Journal of Educational Data Mining, 5(1):1–8.
Wu, S.-T. (2007). Knowledge Discovery Using Pattern Taxonomy Model in Text Mining. PhD thesis, Queensland University of Technology.
Wu, X., Zhu, X., Wu, G.-Q., and Ding, W. (2014). Data Mining with Big Data. IEEE transactions on knowledge and data engineering, 26(1):97–107.