A Path-Aware Routing for Data Intensive Science: Proposal, Deployment and Evaluation in High-Performance Testbed
Resumo
Este artigo apresenta uma arquitetura de rede ciente do caminho projetada para aprimorar a engenharia de tráfego por meio de controlabilidade e visibilidade do caminho em ciência intensiva de dados (DIS). A abordagem se baseia em uma arquitetura de rede com núcleo sem estado que baseia-se em encaminhamento de pacotes em taxa de linha reutilizando o cyclic redundancy check (CRC) implementado em linguagem P4. Uma abordagem path-aware foi desenvolvida para habilitar a seleção de caminho e a coleta de métricas de rede em hardware. Como prova de conceito, nossa abordagem foi implantada em uma topologia intra-datacenter multicaminho de 100+ Gbps. A avaliação inclui experimentos em i) uma topologia intra-datacenter multicaminho de 100+ Gbps e ii) inter-datacenter em uma infraestrutura híbrida pan-americana conectando Vitória, ES, Brasil, e Atlanta, GA, EUA. O direcionamento de tráfego é demonstrado para intra-datacenter no testbed da Caltech, onde fluxos simultâneos atingem aproximadamente 40 Gbps cada em line rate. A comunicação entre datacenters é avaliada em um link de 10.000 km como parte de um estresse de tráfego recorde de 10 Tbps na Supercomputing 2024.
Referências
Anderson, T. et al. (2014). A brief overview of the nebula future internet architecture. SIGCOMM Comput. Commun. Rev., 44(3):81–86.
Barisits, M., Beermann, T., Berghaus, F., Bockelman, B., Bogado, J., Cameron, D., Christidis, D., Ciangottini, D., Dimitrov, G., Elsing, M., et al. (2019). Rucio: Scientific data management. Computing and Software for Big Science, 3:1–19.
Barrera, D., Chuat, L., Perrig, A., Reischuk, R. M., and Szalachowski, P. (2017). The scion internet architecture. Commun. ACM, 60(6):56–65.
Borges, E., Pontes, E., Mate, C., Loui, F., Martinello, M., and Ribeiro, M. (2022). Freerouter in a nutshell: A protocol and routing platform for open and portable carrier-class testbeds. In Anais do I Workshop de Testbeds, pages 36–46, Porto Alegre, RS, Brasil. SBC.
Dominicini, C. et al. (2020a). Polka: Polynomial key-based architecture for source routing in network fabrics. In 2020 6th IEEE Conference on Network Softwarization (NetSoft), pages 326–334. IEEE.
Dominicini, C., Guimarães, R., Mafioletti, D., Martinello, M., Ribeiro, M. R., Villaça, R., Loui, F., Ortiz, J., Slyne, F., Ruffini, M., et al. (2021). Deploying polka source routing in P4 switches. In 2021 International Conference on Optical Network Design and Modeling (ONDM), pages 1–3. IEEE.
Dominicini, C., Mafioletti, D., Locateli, A. C., Villaca, R., Martinello, M., Ribeiro, M., and Gorodnik, A. (2020b). Polka: Polynomial key-based architecture for source routing in network fabrics. In 2020 6th IEEE Conference on Network Softwarization (NetSoft), pages 326–334. IEEE.
Dominicini, C. K. et al. (2020c). KeySFC: Traffic steering using strict source routing for dynamic and efficient network orchestration. Computer Networks, 167:106975.
Dunefsky, J. et al. (2022). Transport control networking: Optimizing efficiency and control of data transport for data-intensive networks. In Proceedings of the ACM SIGCOMM Workshop on Network-Application Integration, NAI ’22, pages 60–66, New York, NY, USA. Association for Computing Machinery.
Gomes, R. R. et al. (2016). KAR: Key-for-any-route, a resilient routing system. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop, pages 120–127.
Guimarães, R. S. et al. (2022). M-polka: Multipath polynomial key-based source routing for reliable communications. IEEE Transactions on Network and Service Management, pages 1–1.
GÉANT GP4L (2024). Gp4l documentation. Accessed: Jan 2025.
Harutyunyan, H., Swenson, C., and Newman, H. B. (2009). FDT: A high-speed data transfer tool for scientific applications. International Journal of High Performance Computing Applications, 23(3):254–267.
InMon Corporation (2023). InMon Traffic Monitor Tool. Accessed: Jan 2025.
Jin, X., Farrington, N., and Rexford, J. (2016). Your data center switch is trying too hard. In Proceedings of the Symposium on SDN Research, pages 1–6.
Johnston, W., Dart, E., and Tierney, B. Addressing the problem of data mobility for data-intensive science. In Proceedings of the Eighth International Conference on Engineering Computational Technology.
Jyothi, S. A., Dong, M., and Godfrey, P. B. (2015). Towards a flexible data center fabric with source routing. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research, pages 1–8.
Liberato, A. et al. (2018). RDNA: Residue-Defined Networking Architecture Enabling Ultra-Reliable Low-Latency Datacenters. IEEE TNSM.
Martinello, M., Ribeiro, M. R., de Oliveira, R. E. Z., and de Angelis Vitoi, R. (2014). Keyflow: A prototype for evolving SDN toward core network fabrics. IEEE Network, 28(2):12–19.
Monga, I., Guok, C., MacAuley, J., Sim, A., Newman, H., Balcas, J., DeMar, P., Winkler, L., Lehman, T., and Yang, X. (2020). Software-defined network for end-to-end networked science at the exascale. Future Generation Computer Systems, 110:181–201.
Newman, H., Mughal, A., Kcira, D., Legrand, I., Voicu, R., and Bunn, J. (2015). High speed scientific data transfers using software defined networking. In Proceedings of the Second Workshop on Innovating the Network for Data-Intensive Science, pages 1–9.
Newman, H. B., Ellisman, M. H., and Orcutt, J. A. (2003). Data-intensive e-science frontier research. Commun. ACM, 46(11):68–77.
Ren, Y. et al. (2017). Flowtable-free routing for data center networks: A software-defined approach. In GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages 1–6.
Scherrer, S., Legner, M., Perrig, A., and Schmid, S. (2021). Enabling novel interconnection agreements with path-aware networking architectures. In Proceedings of the 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 1–12. IEEE.
Sunshine, C. A. (1977). Source routing in computer networks. ACM SIGCOMM Computer Communication Review, 7(1):29–33.
Trammell, B. (2022). Current open questions in path-aware networking. RFC 9217, IRTF.
Ventre, P. L. et al. (2020). Segment routing: A comprehensive survey of research activities, standardization efforts, and implementation results. IEEE Communications Surveys & Tutorials, 23(1):182–221.
Viswanathan, A., Rosen, E. C., and Callon, R. (2001). Multiprotocol Label Switching Architecture. RFC 3031.
Wessing, H. et al. (2002). Novel scheme for packet forwarding without header modifications in optical networks. Journal of Lightwave Technology, 20(8):1277–1283.
Zurawski, J., Brown, B., Carder, D., Colby, E., Dart, E., Miller, K., Patwa, A., Robinson, K., Rotman, L., and Wiedlea, A. (2021). 2020 high energy physics network requirements review final report.
