Dealing with a large number of students and inequality when teaching programming in higher education

  • Gabriel Xará UNIFOR
  • Laura O. Moraes UNIFOR
  • Carla A. D. M. Delgado UFRJ
  • João Pedro Freire UFRJ
  • Claudio Miceli de Farias UFRJ

Resumo


Considering the characteristics found in the post-pandemic scenario of public higher education in Brazil, we must address issues related to equity in access to educational resources. We present the new features of Machine Teaching, a web system used in introductory programming classes to support students and instructors. The innovations aim to adapt the system to post-pandemic conditions and the diverse public resulting from policies to democratize access to Brazilian universities. We present functionalities to mitigate problems related to many students per instructor, such as student dashboards and alerts indicating disengaged students who are likely to drop out. We also address computer and internet access difficulties by transforming the architecture from client-based to remote-based.

Referências

Al-Shabandar, R., Hussain, A. J., Liatsis, P., and Keight, R. (2018). Analyzing Learners Behavior in MOOCs: An Examination of Performance and Motivation Using a Data-Driven Approach. IEEE Access, 6:73669–73685.

Araujo, L. G., Bittencourt, R., and Chavez, C. (2021). Python enhanced error feedback: Uma ide online de apoio ao processo de ensino-aprendizagem em programação. In Anais do Simpósio Brasileiro de Educação em Computação, pages 326–333, Porto Alegre, RS, Brasil. SBC.

Beal, A. (2005). Segurança da Informação: Princípios e Melhores Práticas para a Proteção dos Ativos de Informação nas Organizações. Atlas.

Bez, J. L., Ferreira, C. E., and Tonin, N. (2013). Uri online judge academic: A tool for professors. In Proceedings of the 2013 International Conference on Advanced ICT and Education, pages 744–747.

Bez, J. L., Tonin, N., and Zanin, F. (2012). Enhancing traditional algorithms classes using uri online judge. In 2012 International Conference on e-Learning and e-Technologies in Education (ICEEE), pages 110–113.

Castioni, R., Melo, A. A. S. d., Nascimento, P. M., and Ramos, D. L. (2021). Universidades federais na pandemia da covid-19: acesso discente à internet e ensino remoto emergencial. Ensaio: Avaliação e Políticas Públicas em Educação, 29(111):399–419.

Cunha, J. K. A., Oliveira, B. R. d., and Fernandes, N. R. (2023). Assistência estudantil na educação superior: A trajetória do programa nacional de assistência estudantil na universidade federal de ouro preto. Revista Tempos e Espaços em Educação, 16(35):e18808.

Damasceno, A., Almeida, C., Fernandes, W., Lopes, H., and Barbosa, S. (2019). What Can Be Found from Student Interaction Logs of Online Courses Offered in Brazil. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação SBIE), 30(1):1641.

de Castro Xara Wanderley, G. M. (2023). Arquitetura resiliente e escalável para um sistema de execução de código remoto. Trabalho de conclusão de curso, Universidade Federal do Rio de Janeiro.

Edwards, S. H. and Perez-Quinones, M. A. (2008). Web-CAT: automatically grading programming assignments. In Proc. 13th Annu. Conf. on Innovation and Technology Computer Science Education, page 328, Madrid, Spain.

Edwards, S. H., Tilden, D. S., and Allevato, A. (2014). Pythy: improving the introductory python programming experience. In Proc. 45th ACM technical symposium on Computer science education, pages 641–646, Atlanta, GA, USA.

Galvão, L., Fernandes, D., and Gadelha, B. (2016). Juiz online como ferramenta de apoio a uma metodologia de ensino híbrido em programação. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação - SBIE), 27(1):140–149.

Hipólito, J., Shirai, L. T., Diele-Viegas, L. M., Halinski, R., Pires, C. S. S., and Fontes, E. M. G. (2022). Brazilian budget cuts further threaten gender equality in research. Nature Ecology & Evolution, 6:234.

Hovemeyer, D. and Spacco, J. (2013). Cloudcoder: A web-based programming exercise system. J. Comput. Sci. in Colleges, 28:30.

Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M. A., Sheard, J., Skupas, B., Spacco, J., Szabo, C., and Toll, D. (2015). Educational data mining and learning analytics in programming: Literature review and case studies. In Proc. 2015 ITiCSE Working Group Report, pages 41–63, Vilnius, Lithuania.

Lima, M. E. O., da Costa Neves, P. S., and e Silva, P. B. (2014). A implantação de cotas na universidade: paternalismo e ameaça à posição dos grupos dominantes. Revista Brasileira de Educação, 19:141 – 163.

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J., Sheard, J., and Szabo, C. (2018). Introductory programming: A systematic literature review. In Proc. Companion 23rd Annu. ACM Conf. Innovation and Technology in Computer Science Education, ITiCSE 2018 Companion, page 55–106, Larnaca, Cyprus.

Moraes, L., Delgado, C., Freire, J., and Pedreira, C. (2022). Machine teaching: uma ferramenta didática e de análise de dados para suporte a cursos introdutórios de programação. In Anais do II Simpósio Brasileiro de Educação em Computação, pages 213–223, Porto Alegre, RS, Brasil. SBC.

Moraes, L. O., Pedreira, C. E., Delgado, C., and Freire, J. P. (2021). Supporting decisions using educational data analysis. In Anais Estendidos do XXVII Simpósio Brasileiro de Sistemas Multimídia e Web, pages 99–102, Porto Alegre, RS, Brasil. SBC.

Panamalai Murali, K. (2016). CodeWorkout: Design and implementation of an online drill-and-practice system for introductory programming. Thesis, Virginia Tech.

Papancea, A., Spacco, J., and Hovemeyer, D. (2013). An open platform for managing short programming exercises. In Proc. 2013 ACM Conf. Int. Computing Education Research, pages 47–52, San Diego, CA, USA.

Paul J. Baker, R. B. and Tolone, W. (1974). Diversifying learning opportunities: A response to the problems of mass education. Research in Higher Education, 2:251–263.

Pereira, F. D., Oliveira, E., Cristea, A., Fernandes, D., Silva, L., Aguiar, G., Alamri, A., and Alshehri, M. (2019). Early Dropout Prediction for Programming Courses Supported by Online Judges. In Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., and Luckin, R., editors, Artificial Intelligence in Education, Lecture Notes in Computer Science, pages 67–72, Cham. Springer International Publishing.

Sorva, J. and Sirkiä, T. (2010). UUhistle: a software tool for visual program simulation. In Proc. 10th Koli Calling Int. Conf. Computing Education Research, pages 49–54, Koli, Finland.

United Nations, D. o. E. and Development, S. A. S. (2015). Transforming our world: the 2030 agenda for sustainable development.

Zingaro, D., Cherenkova, Y., Karpova, O., and Petersen, A. (2013). Facilitating code-writing in PI classes. In Proc. 44th ACM Technical Symp. Computer Science Education, pages 585–590, Denver, CO, USA.
Publicado
06/11/2023
XARÁ, Gabriel; MORAES, Laura O.; DELGADO, Carla A. D. M.; FREIRE, João Pedro; FARIAS, Claudio Miceli de. Dealing with a large number of students and inequality when teaching programming in higher education. In: WORKSHOP DE INFORMÁTICA NA ESCOLA (WIE), 29. , 2023, Passo Fundo/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 1230-1242. DOI: https://doi.org/10.5753/wie.2023.235057.