Uma avaliação do impacto de políticas de seleção de servidores cache na borda das redes móveis

  • Leonardo Fiório Soares UFF
  • Ian Vilar Bastos UERJ
  • Igor Monteiro Moraes UFF

Abstract


The objective of this paper is to show that cache server selection policies have a reduced impact on cache efficiency at the edge of mobile networks. To do this, simulations are performed by varying the server selection policies, the storage capacity, and the distribution of storage among cache servers. The efficiency metrics used are the average hit and the average delay for retrieving the content segments. The results show that the different server selection policies have less than 1% performance difference between each other for the average delay for obtaining the segments. On the other hand, storage capacity has a large impact on cache efficiency. A 7 times larger storage capacity can reduce the average delay by 36%. The results also show that concentrating the cache storage capacity on a single server instead of distributing it can reduce the maintenance cost by impacting the average delay by less than 3%.

References

Cisco, U. (2021). Cisco annual Internet report (2018–2023) white paper. 2020. Acessado em 24 de fevereiro de 2022, 10(01).

de Souza, G. and Duarte, E. (2020). Uma arquitetura de alta disponibilidade para funções virtualizadas de rede. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 407–420, Porto Alegre, RS, Brasil. SBC.

Dolui, K. and Datta, S. K. (2017). Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing. In 2017 Global Internet of Things Summit (GIoTS), pages 1–6.

Garcia-Saavedra, A., Salvat, J. X., Li, X., and Costa-Perez, X. (2018). Wizhaul: On the centralization degree of cloud ran next generation fronthaul. IEEE Transactions on Mobile Computing, 17(10):2452–2466.

Ge, X., Zhou, R., and Li, Q. (2020). 5g nfv-based tactile internet for mission-critical iot services. IEEE Internet of Things Journal, 7(7):6150–6163.

Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., and Young, V. (2015). Mobile edge computing—a key technology towards 5G. ETSI white paper, 11(11):1–16.

Huang, X., He, L., Chen, X., Liu, G., and Li, F. (2020). A more refined mobile edge cache replacement scheme for adaptive video streaming with mutual cooperation in multi-mec servers. In 2020 IEEE International Conference on Multimedia and Expo (ICME), pages 1–6.

Khan, J. A., Westphal, C., and Ghamri-Doudane, Y. (2017). A content-based centrality metric for collaborative caching in information-centric fogs. In 2017 IFIP Networking Conference (IFIP Networking) and Workshops, pages 1–6.

Liu, Z., Zhang, J., Li, Y., and Ji, Y. (2020). Hierarchical mec servers deployment and user-mec server association in c-rans over wdm ring networks. Sensors, 20(5).

Ravache, G. (2021). Globoplay abandona TVs antigas e se alia ao Google para não ’travar’ no BBB. url: [link].

Ren, D., Gui, X., Zhang, K., and Wu, J. (2020). Mobility-aware traffic offloading via cooperative coded edge caching. IEEE Access, 8:43427–43442.

Zhu, H. and Huang, C. (2017). Availability-aware mobile edge application placement in 5g networks. In GLOBECOM 2017 2017 IEEE Global Communications Conference, pages 1–6.
Published
2023-08-06
SOARES, Leonardo Fiório; BASTOS, Ian Vilar; MORAES, Igor Monteiro. Uma avaliação do impacto de políticas de seleção de servidores cache na borda das redes móveis. In: WORKSHOP ON PERFORMANCE OF COMPUTER AND COMMUNICATION SYSTEMS (WPERFORMANCE), 22. , 2023, João Pessoa/PB. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 85-96. ISSN 2595-6167. DOI: https://doi.org/10.5753/wperformance.2023.229882.