Um Método de Ocupação de Canal por Redes de Sensores sob Interferência WLAN Comparando com Padrões Industriais
Abstract
Data exchange in sensor networks under interference from other technologies requires multichannel communication strategies and several methodologies of medium access protocols were adopted seeking better performance. This paper proposes a new method of searching and owning a communication channel, considering the signal-to-noise ratio acting in environments under interference from other wireless local area networks (WLANs), where the channel to be occupied results the lowest level of interference. Comparative results are presented with other technologies that employ channel switching under the use of blacklist, such as ISA100.11a and IEEE802.15e / ATSCHa, where we show that the proposed method obtains the best performance because it ensures that the channel occupied is the best available.
References
Algora, C. M. G., Reguera, V. A., Deligiannis, N., and Steenhaut, K. (2017). Review and classification of multichannel mac protocols for low-power and lossy networks. IEEE Access, 5:19536–19561.
Bertelli, G. P. M. (2017). Controle sobre redes industriais sem fio: uma avaliação de desempenho dos padrões wirelesshart e isa100. 11a. Master’s thesis, Universidade Federal do Rio Grande do Norte, Brasil, Dissertação de mestrado.
Chiwewe, T. M., Mbuya, C. F., and Hancke, G. P. (2015). Using cognitive radio for interference-resistant industrial wireless sensor networks: An overview. IEEE Tran- sactions on Industrial Informatics, 11(6):1466–1481. Cisco-Inc. (2017). Lan design guide for high-density client environments in higher edu- cation. Cisco Documentation.
De Guglielmo, D., Brienza, S., and Anastasi, G. (2016). Ieee 802.15. 4e: A survey. Computer Communications, 88:1–24.
Han, W., Huang, C., Li, J., Li, Z., and Cui, S. (2015). Correlation-based spectrum sensing with oversampling in cognitive radio. IEEE Journal on Selected Areas in Communica- tions, 33(5):788–802.
Hermeto, R. T., Gallais, A., and Theoleyre, F. (2017). Scheduling for ieee802. 15.4-tsch and slow channel hopping mac in low power industrial wireless networks: A survey. Computer Communications, 114:84-105. IEEE.802.11 (2007). Wireless lan medium access control (mac) and physical layer (phy)
specifications. IEEE.802.15.4 (2015). IEEE std 802.15.4-2015 (revision of IEEE std 802.15.4-2011) - ieee standard for low-rate wireless networks.
Ivanovitch Silva, D. L., Duarte, A., Guedes, L. A., Aquino, L., and Saito, K. (2013). Tecnologias emergentes para redes industriais sem fio: Wirelesshart vs isa100.11a. In VII Congresso Rio Automação, Rio de Janeiro, RJ, Brazil, pages 1–10.
Li, M., Li, Z., and Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12):2538–2557.
Nobre, M. H. R. (2015). Contribuições em escalonamento e análise de desempenho de redes wirelesshart. Master’s thesis, Universidade Federal do Rio Grande do Norte, Brasil, Tese de Doutorado.
Rappaport, T. S. (2002). Wireless Communications: Principles and Practice. Prent. Hall.
Son, D., Krishnamachari, B., and Heidemann, J. (2004). Experimental study of the effects of transmission power control and blacklisting in wireless sensor networks. In IEEE SECON, Santa Clara, CA, EUA, pages 289–298.
Sun, H., Nallanathan, A., Wang, C.-X., and Chen, Y. (2013). Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wireless Communications, 20(2):74–81.
Tavakoli, R., Nabi, M., Basten, T., and Goossens, K. (2015). Enhanced time-slotted chan- nel hopping in wsns using non-intrusive channel-quality estimation. In IEEE MASS, Dallas, TX, USA, pages 217–225.
Zareei, M., Islam, A., Baharun, S., Vargas-Rosales, C., Azpilicueta, L., and Mansoor, N. (2017). Medium access control protocols for cognitive radio ad hoc networks: A survey. Sensors, 17(9):21–36.
