Provisionamento de Recursos de Hardware em Redes Híbridas de Acesso por Rádio com Base no Efeito de Maré

  • Igor W. S. Falcão UFPA
  • Rafael F. Vieira UFPA
  • Marcos C. da R. Seruffo UFPA
  • Diego L. Cardoso UFPA

Abstract


The C-RAN (Centralized Radio Access Network) architecture is a proposal to meet the high demand of fifth generation (5G) networks. Because the communication traffic has a dynamic behavior due to the ”Tidal Ef- fect”(phenomenon responsible for variation in network flow), the current architecture, D-RAN (Decentralized Radio Access Network) does not guarantee the efficient delivery of resources. This work presents a heuristic for the dimensioning of hardware resources considering the Number of Users Served and Aggregate Flow. The proposal addressed traffic variability, maximizing the efficiency of BBU (BaseBand Unit) and quantifying SCs (Small Cells) needed to cover the network demand.

References

Bian, Y. Q. and Rao, D. (2014). Small cells big opportunities. Global Business Consul- ting. Huawei Technologies Co., Ltd.

Castro, B., Gomes, I., Ribeiro, F., and Cavalcante, G. (2010). Cost231-hata and sui mo- dels performance using a lms tuning algorithm on 5.8 ghz in amazon region cities. In Proceedings ofthe Fourth European Conference on Antennas and Propagation, pages 1–3. IEEE.

Chang, W., Xie, T., Zhou, F., Tian, J., and Zhang, X. (2016). A prefiltering c-ran archi- tecture with compressed link data rate in massive mimo. In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pages 1–6. IEEE.

Fakhri, Z. H., Khan, M., Sabir, F., and Al-Raweshidy, H. (2018). A resource allocation mechanism for cloud radio access network based on cell differentiation and integration concept. IEEE Transactions on Network Science and Engineering, 5(4):261–275.

Hajisami, A., Tran, T. X., and Pompili, D. (2015). Dynamic provisioning for high energy efficiency and resource utilization in cloud rans. In 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, pages 471–472. IEEE.

Idachaba, F. E. (2016). 5g networks: Open network architecture and densification strate- gies for beyond 1000x network capacity increase. In 2016 Future Technologies Con- ference (FTC), pages 1265–1269. IEEE.

Jaber, M., Owens, D., Imran, M. A., Tafazolli, R., and Tukmanov, A. (2016). A joint backhaul and ran perspective on the benefits of centralised ran functions. In 2016 IEEE International Conference on CommunicationsWorkshops (ICC), pages 226–231. IEEE.

Khan, M., Alhumaima, R., and Al-Raweshidy, H. (2015). Quality of service aware dyna- mic bbu-rrh mapping in cloud radio access network. In 2015 International Conference on Emerging Technologies (ICET), pages 1–5. IEEE.

Khan, R., Al-Hadi, A. A., and Soh, P. J. (2018). Recent advancements in user effect miti- gation for mobile terminal antennas: A review. IEEE Transactions on Electromagnetic Compatibility, (99):1–9. Khorsandi, B. M. and Raffaelli, C. (2018). Bbu location algorithms for survivable 5g c-ran over wdm. Computer Networks, 144:53–63.

Kylasa, S. B., Kollias, G., and Grama, A. (2016). Social ties and checkin sites: connec- tions and latent structures in location-based social networks. Social Network Analysis and Mining, 6(1):95.

Mobile, C. (2011). C-ran: the road towards green ran. White Paper, ver, 2:1–10.

Musumeci, F., Bellanzon, C., Carapellese, N., Tornatore, M., Pattavina, A., and Gosselin, S. (2016). Optimal bbu placement for 5g c-ran deployment over wdm aggregation networks. Journal ofLightwave Technology, 34(8):1963–1970.

Namba, S., Warabino, T., and Kaneko, S. (2012). Bbu-rrh switching schemes for cen- tralized ran. In 7th International Conference on Communications and Networking in China, pages 762–766. IEEE.

Nassar, A. T., Sulyman, A. I., and Alsanie, A. (2015). Radio capacity estimation for millimeter wave 5g cellular networks using narrow beamwidth antennas at the base stations. International Journal ofAntennas and Propagation, 2015.

Oughton, E. J., Frias, Z., van der Gaast, S., and van der Berg, R. (2019). Assessing the capacity, coverage and cost of 5g infrastructure strategies: Analysis of the netherlands. Telematics and Informatics.

Pan, C., Zhu, H., Gomes, N. J., and Wang, J. (2017). Joint precoding and rrh selection for user-centric green mimo c-ran. IEEE Transactions on wireless Communications, 16(5):2891–2906.

Pompili, D., Hajisami, A., and Viswanathan, H. (2015). Dynamic provisioning and allo- cation in cloud radio access networks (c-rans). Ad Hoc Networks, 30:128–143.

Scholz, S. and Grob-Lipski, H. (2016). Reallocation strategies for user processing tasks in future cloud-ran architectures. In 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 1–6. IEEE.

Sulyman, A. I., Nassar, A. T., Samimi, M. K., MacCartney, G. R., Rappaport, T. S., and Alsanie, A. (2014). Radio propagation path loss models for 5g cellular networks in the 28 ghz and 38 ghz millimeter-wave bands. IEEE Communications Magazine, 52(9):78–86.

Wang, K., Zhou, W., and Mao, S. (2017). On joint bbu/rrh resource allocation in hetero- geneous cloud-rans. IEEE Internet ofThings Journal, 4(3):749–759.

Yan, B., Zhao, Y., Yu, X., Wang, W., Wu, Y., Wang, Y., and Zhang, J. (2018). Tidal- traffic-aware routing and spectrum allocation in elastic optical networks. Journal of Optical Communications and Networking, 10(11):832–842.

Yoshioka, S., Inoue, Y., Suyama, S., Kishiyama, Y., Okumura, Y., Kepler, J., and Cudak, M. (2016). Field experimental evaluation of beamtracking and latency performance for 5g mmwave radio access in outdoor mobile environment. In 2016 IEEE 27th An- nual International Symposium on Personal, Indoor, and Mobile Radio Communicati- ons (PIMRC), pages 1–6. IEEE.

Zhang, J., Zhang, X., Yan, Z., Li, Y., Wang, W., and Zhang, Y. (2016). Social-aware cache information processing for 5g ultra-dense networks. In 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), pages 1–5. IEEE.

Zhong, Z., Hua, N., Tornatore, M., Li, Y., Liu, H., Ma, C., Li, Y., Zheng, X., and Mukher- jee, B. (2016). Energy efficiency and blocking reduction for tidal traffic via state- ful grooming in ip-over-optical networks. Journal of Optical Communications and Networking, 8(3):175–189.
Published
2019-07-08
FALCÃO, Igor W. S.; VIEIRA, Rafael F.; SERUFFO, Marcos C. da R.; CARDOSO, Diego L.. Provisionamento de Recursos de Hardware em Redes Híbridas de Acesso por Rádio com Base no Efeito de Maré. In: WORKSHOP ON PERFORMANCE OF COMPUTER AND COMMUNICATION SYSTEMS (WPERFORMANCE), 2019. , 2019, Belém. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . ISSN 2595-6167. DOI: https://doi.org/10.5753/wperformance.2019.6468.