Digital Fencing for Farms: Enhancing Object Detection through Multi-Dataset Integration

Resumo


Security in farm areas is a critical concern due to the risks posed by wild animal invasions, farm animals straying, and unauthorized human entry. Conventional object detection models, often trained on urban or context-specific datasets, frequently underperform in farm settings. To address this, our study investigates the integration of multi-datasets to enhance object detection for digital fences, thereby improving farm security. We propose a method to effectively utilize multi-datasets, even when they do not have the same classes, ensuring comprehensive coverage of all required categories. The proposed SmartClass methodology achieved more robust and adaptable detection approaches, suitable for agricultural environments, with considerable increases in recall, mAP50, and mAP50-95 metrics compared to models trained without the methodology. The code and data are available at github.com/MaVILab-UFV/Digital-Fencing-WVC-2024.

Palavras-chave: Object Detection, Farm security, Digital Fence, Data Integration
Publicado
06/11/2024
FERREIRA, Juliana Quintiliano de Oliveira; SILVA, Lucas; GOMES, Thiago L.; SILVA, Michel Melo. Digital Fencing for Farms: Enhancing Object Detection through Multi-Dataset Integration. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 196-203.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.