Variational Method Integrating Edge Detection and Smoothing in Digital Images
Resumo
There is a consensus in computer vision about the importance of the scale concept for edge extraction and for image smoothing or representation. In this paper we explore a variational approach that allows to put together edge detection and image smoothing in a unified linear scheme. Basically, the functional proposed by Mumford and Shah is re-written as an energy defined with two arguments: the first one representing smooth versions of the original image and the second one encompassing its edge set. We follow known results in the variational analysis to obtain a numerical scheme to minimize the energy. We apply Fourier analysis to verify that the iterative scheme converges to a low-pass representation of the original image in the first argument and a high-pass signal in the other one. In the experimental results we show that the obtained scheme encourages intraregion image smoothing in preference to interregion blurring with edge localization at a desired scale.
Referências
C. Lopez-Molina, B. D. Baets, H. Bustince, J. Sanz, and E. Barrenechea, Multiscale edge detection based on gaussian smoothing and edge tracking, Knowledge-Based Systems, vol. 44, pp. 101 - 111, DOI: 10.1016/j.knosys.2013.01.026
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. On pattern analysis and Mach. Intell., vol. 12, no. 7, pp. 629 - 639, July.
L. Florack, A. Salden, B. T. H. Romery, J. Koenderink, and M. Viergever, Nonlinear scale-space, Image and vision computing, vol. 13, no. 4, pp. 279 - 294, May. DOI: 10.1016/0262-8856(95)99716-e
C. Lopez-Molina and N. Madrid, Non-linear scale-space based on fuzzy sharpening, in 2017 IFSA- SCIS, June 2017, pp. 1 - 6. DOI: 10.1109/ifsa-scis.2017.8023284
M. Al-nasrawi, G. Deng, and B. S. Thai, Edge-aware smoothing through adaptive interpolation, Signal, image and video processing, pp. 1 - 8, 08 DOI: 10.1007/s11760-017-1164-x
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. On pure and applied mathematics, vol. 42, no. 5, pp. 577 - 685, DOI: 10.1002/cpa.3160420503
B. Bourdin, Image segmentation with a finite element method, ESAIM: Mathematical modelling and numerical analysis, vol. 33, no. 2, pp. 229 - 244, DOI: 10.1051/m2an:1999114
T. J. Richardson and S. K. Mitter, A variational formulation-based edge focussing algorithm, Sadhana, vol. 22, no. 4, pp. 553 - 574, Aug DOI: 10.1007/bf02745579
F. H. Fubel, Implementation Perona-Malik. github.com/fubel/PeronaMalikDiffusion.
L. OpenCV, Canny filter at openCV. docs.opencv.org/1.0/da/d22/tutorial.py.canny.html, 2019.
I. M. F. Santos, G. F. M. Junior, and L. C. M. Aquino, Segmentação de imagens pulmonares em tomografia computatorizada a partir do modelo de chan-vese com influencia de Ruído, in Anais do V ermac 2018, Maceió.
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. On image processing, vol. 13, no. 4, pp. 600 - 612, DOI: 10.1109/tip.2003.819861
G. Deng, Guided wavelet shrinkage for edge-aware smoothing, IEEE Trans. On image processing, vol. 26, no. 2, pp. 900 - 914, Feb DOI: 10.1109/tip.2016.2633941