Understanding fully-connected and convolution allayers in unsupervised learning using face images

  • Lucas Fontes Buzuti Centro Universitário FEI
  • Carlos Eduardo Thomaz Centro Universitário FEI

Resumo


The goal of this paper is to implement and compare two unsupervised models of deep learning: Autoencoder and Convolutional Autoencoder. These neural network models have been trained to learn regularities in well-framed face images with different facial expressions. The Autoencoder's basic topology is addressed here, composed of encoding and decoding multilayers. This paper approaches these automatic codings using multivariate statistics to visually understand the bottleneck differences between the fully-connected and convolutional layers and the corresponding importance of the dropout strategy when applied in a model.

Palavras-chave: deep neural network, autoencoder, convolutional autoencoder, multivariate statistics

Referências

ALBAWI, Saad; MOHAMMED, Tareq Abed ; AL-ZAWI, Saad. Understanding of a convolutional neural network. In: IEEE. ENGINEERING and Technology (ICET), 2017 International Conference on. [S.l.: s.n.], p. 1 - 6.

BALDI, Pierre; HORNIK, Kurt. Neural networks and principal component analysis: Learning from examples without local minima. Neural networks, Elsevier, v. 2, n. 1, p. 53 - 58, DOI: 10.1016/0893-6080(89)90014-2

C. E. Thomaz and G. A. Giraldi. A new ranking method for Principal Components Analysis and its application to face image analysis, Image and Vision Computing, vol. 28, no. 6, pp. 902 - 913, June DOI: 10.1016/j.imavis.2009.11.005

CHEN, Min et al. Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Transactions on Big Data, DOI: 10.1109/tbdata.2017.2717439

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. [S.l.]: MIT Press, http://www.deeplearningbook.org. DOI: 10.1007/s10710-017-9314-z

GOODFELLOW, Ian et al. Generative adversarial nets. In: ADVANCES in neural information processing systems. [S.l.: s.n.], p. 2672 - 2680.

HINTON, Geoffrey E. et al. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,

HINTON, Geoffrey E ; SALAKHUTDINOV, Ruslan R. Reducing the dimensionality of data with neural networks. science, American Association for the Advancement of Science, v. 313, n. 5786, p. 504 - 507, DOI: 10.1126/science.1127647

HINTON, Geoffrey E ; ZEMEL, Richard S. Autoencoders, minimum description length and Helmholtz free energy. In: ADVANCES in neural information processing systems. [S.l.: s.n.], p. 3 - 10.

KINGMA, Diederik P ; WELLING, Max. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning. nature, v. 521, n. 7553, p. 436, DOI: 10.1038/nature14539

LE CUN, Yann et al. Handwritten digit recognition: Applications of neural network chips and automatic learning. IEEE Communications Magazine, IEEE, v. 27, n. 11, p. 41 - 46, DOI: 10.1109/35.41400

LE CUN, Yann et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, IEEE, v. 86, n. 11, p. 2278 - 2324, DOI: 10.1109/5.726791

MASCI, Jonathan et al. Stacked convolutional auto-encoders for hierarchical feature extraction. In: International Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg, p. 52 - 59. DOI: 10.1007/978-3-642-21735-7_7

NAGY, George. State of the art in pattern recognition. Proceedings of the IEEE, v. 56, n. 5, p. 836 - 863, DOI: 10.1109/proc.1968.6414

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, p. 234 - 241, DOI: 10.1007/978-3-319-24574-4_28

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning internal representations by error propagation. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1 : Foundations, MIT Press, Cambridge, MA. pp 318 - 1986. DOI: 10.21236/ada164453

SRIVASTAVA, Nitish et al. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, JMLR. org, v. 15, n. 1, p. 1929 - 1958,

SZEGEDY, Christian et al. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence.

ZEILER, Matthew D.; FERGUS,Rob. Visualizing and understanding convolutional networks. In: European conference on computer vision. springer, Cham, p. 818 - 833, DOI: 10.1007/978-3-319-10590-1_53
Publicado
09/09/2019
BUZUTI, Lucas Fontes; THOMAZ, Carlos Eduardo. Understanding fully-connected and convolution allayers in unsupervised learning using face images. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 15. , 2019, São Bernardo do Campo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 13-18. DOI: https://doi.org/10.5753/wvc.2019.7621.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.