A short-term electricity demand forecasting in the Southern Region of Brazil usingthe ARIMA Model and the Holt Exponential Smoothing Model (SEH)
Abstract
Predicting the demand for electricity is an essential task for the nation's economic strategy, and an adequate balance between generation of distribution is extremely necessary. In this context, this work performed the forecast of electricity demand in the Southern Region of Brazil using time series modeling of residential consumption data. The Holt Exponential Smoothing Model and the ARIMA Model were used. The results achieved showed that the models were able to adequately fit the data in short-term, presenting a low validation error, which can be explained by the 2008 global economic crisis.
References
Dickey, D. A. and Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: journal of the Econometric Society, pages 1057–1072. dos Santos, B. F. C. (2015). Caracterização de diagramas de consumo doméstico detricidade na perspetiva da comercialização. Master’s thesis, Faculdade de Engenharia da Universidade do Porto, Portugal.
EPE, E. D. P. E. (2020). Balanço energético nacional: Relatório sı́ntese, ano base 2019. Rio de Janeiro: Ministério de Minas e Energia. Disponı́vel em http://www.epe.gov.br/; acesso em agosto-2020.
Gaither, N. and Fraizer, G. (2001). Administração da produção e operações, 8a . Pioneira, São Paulo, 598p.
Holt, C. C. (1957). Forecasting trends and seasonal by exponentially weighted moving averages. ONR Memorandum, 52.
Hussain, A., Rahman, M., and Memon, J. A. (2016). Forecasting electricity consumption in pakistan: The way forward. Energy Policy, 90:73–80.
Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
Hyndman, R. J., Koehler, A. B., Snyder, R. D., and Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of forecasting, 18(3):439–454.
Jarque, C. M. and Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics letters, 6(3):255–259.
Jiang, W., Wu, X., Gong, Y., Yu, W., and Zhong, X. (2020). Holt–winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy, 193:116779.
Junior, L. M. C., Melquı́ades, T. F., da Costa Martins, K. d. L., Júnior, E. P. S., and de Freitas, G. P. (2018). Previsão do consumo de eletricidade no nordeste brasileiro. Engevista, 20(3):408–423.
Kwiatkowski, D., Phillips, P. C., Schmidt, P., Shin, Y., et al. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of econometrics, 54(1-3):159–178.
Ljung, G. M. and Box, G. E. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2):297–303.
McLeod, A. I. and Li, W. K. (1983). Diagnostic checking arma time series models using squared-residual autocorrelations. Journal of time series analysis, 4(4):269–273.
Miswan, N. H., Said, R. M., and Anuar, S. H. H. (2016). Arima with regression model in modelling electricity load demand. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(12):113–116.
Phillips, P. C. and Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2):335–346.
Samohyl, R. W., Souza, G. P., and de Miranda, R. G. (2008). Métodos simplificados de previsão empresarial. Ciência Moderna.
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4):591–611.
Silveira, A. G., Amaral, M. C., and de Mattos, V. L. D. (2019). Relação de longo prazo tre a renda média domiciliar da população e a demanda residencial por energia elétrica. Revista Mundi Engenharia, Tecnologia e Gestão (ISSN: 2525-4782), 4(2).
Silveira, A. G., de Mattos, V. L. D., and Konrath, A. C. (2017). Avaliação da estacionardade e teste de cointegração em séries temporais o caso da demanda de energia elétrica residencial no brasil. RETEC-Revista de Tecnologias, 9(3).
