Técnicas de Aprendizado por Reforço Aplicadas em Jogos Eletrônicos na Plataforma Geral do Unity
Resumo
O objetivo do presente trabalho é investigar o desempenho de agentes jogadores baseados em aprendizado por reforço mais especificamente, nos algoritmos Q-Learning e Deep Q-Networks (DQN) por meio da plataforma Unity. Para tanto, os autores implementam nela agentes jogadores de Basic e GridWorld que são treinados segundo tais algoritmos. A fim de avaliar o desempenho desses agentes, foi efetuada uma análise comparativa entre eles e os melhores agentes jogadores desses jogos disponibilizados na plataforma Unity, os quais são baseados nas técnicas de aprendizagem Proximal Policy Optimization (PPO) e Soft Actor-Critic (SAC).
Referências
Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning Research, pages 1–16.
Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., et al. (2018). Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905.
Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., and Lange, D. (2018). Unity: A general platform for intelligent agents. arXiv preprint arXiv:1809.02627.
Karttunen, J., Kanervisto, A., Kyrki, V., and Hautamäki, V. (2020). From video game to real robot: The transfer between action spaces. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3567–3571.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521:436–444.
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016). Continuous control with deep reinforcement learning. In International Conference on Learning Representations (ICLR) 2016.
Min, K., Kim, H., and Huh, K. (2019). Deep distributional reinforcement learning based IEEE Transactions on Intelligent Vehicles, high-level driving policy determination. 4(3):416–424.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. nature, 518:529–533.
Mousavi, S. S., Schukat, M., and Howley, E. (2018). Deep reinforcement learning: An overview. In Bi, Y., Kapoor, S., and Bhatia, R., editors, Proceedings of SAI Intelligent Systems Conference (IntelliSys), pages 426–440.
Russell, S. and Norvig, P. (2013). Artificial Intelligence 3ª Ed. Elsevier.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
Sewak, M. (2019). Deep reinforcement learning. Springer.
Stats, I. W. (2021). Internet growth statistics.
Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44.
Watkins, C. J. C. H. (1989). Learning from delayed rewards.
Witkowski, W. (2020). Videogames are a bigger industry than movies and north american sports combined, thanks to the pandemic.