Desvio de Obstáculos Utilizando um Método Estéreo Semi-global

  • Caio César Teodoro Mendes USP
  • Denis Fernando Wolf USP

Resumo


Este artigo apresenta um sistema de desvio de obstáculos utilizando uma câmera estéreo como sensor primário e uma versão modificada do algoritmo VFH. Para garantir a precisão do mapa de disparidades e atender as restrições de desempenho este trabalho faz uso de um método estéreo semiglobal. Nós mostramos a usabilidade e vantagens do método utilizado através de experimentos utilizando nossa plataforma (um veículo elétrico). Como resultado apresentamos uma navegação onde o veículo mantém uma distância segura dos obstáculos enquanto se movimenta.

Referências

Borenstein, J. and Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for mobile robots. In Robotics and Automation, IEEE Transactions on, volume 7, pages 278 –288.

Broggi, A., Caraffi, C., Fedriga, R., and Grisleri, P. (2005). Obstacle detection with stereo vision for off-road vehicle navigation. In Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on, page 65.

Caraffi, C., Cattani, S., and Grisleri, P. (2007). Off-road path and obstacle detection using decision networks and stereo vision. In IEEE Transactions on Intelligent Transportation Systems, volume 8, pages 607–618.

DARPA (2005). DARPA Grand Challenge 2005. [link]. Acessado em 6 de abril de 2011.

DARPA (2007). DARPA Urban Challenge. [link]. Acessado em 6 de abril de 2011.

Erkan, A., Hadsell, R., Sermanet, P., Ben, J., Muller, U., and LeCun, Y. (2007). Adaptive long range vision in unstructured terrain. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages 2421 –2426.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In Commun. ACM, volume 24, pages 381–395, New York, NY, USA. ACM.

Happold, M. and Ollis, M. (2006). Autonomous learning of terrain classification within imagery for robot navigation. In Systems, Man and Cybernetics, 2006. SMC ’06. IEEE International Conference on, volume 1, pages 260 –266.

Hirschmuller, H. (2005). Accurate and efficient stereo processing by semi-global matching and mutual information. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 807 – 814 vol. 2.

Hirschmuller, H. (2006). Stereo vision in structured environments by consistent semi-global matching. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, CVPR ’06, pages 2386–2393, Washington, DC, USA. IEEE Computer Society.

Kolmogorov, V. and Zabih, R. (2001). Computing visual correspondence with occlusions via graph cuts. In In International Conference on Computer Vision, pages 508–515.

Konolige, K. (1997). Small vision systems: Hardware and implementation. 333 Ravenswood Avenue, Menlo Park, CA 94025.

Konolige, K., Agrawal, M., Bolles, R., Cowan, C., Fischler, M., and Gerkey, B. (2008). Outdoor mapping and navigation using stereo vision. In Khatib, O., Kumar, V., and Rus, D., editors, Experimental Robotics, volume 39 of Springer Tracts in Advanced Robotics, pages 179 –190. Springer Berlin / Heidelberg.

Labayrade, R., Aubert, D., and Tarel, J.-P. (2002). Real time obstacle detection in stereovision on non flat road geometry through ”v-disparity”representation. In Intelligent Vehicle Symposium, 2002. IEEE, volume 2, pages 646 – 651 vol.2.

Lima, D. and G.A.S., P. (2010). Um sistema de visão estéreo para navegação de um carro autônomo em ambientes com obstáculos. In XVII Congresso Brasileiro de Automática, pages 224–231.

Mattoccia, S. (2009). Stereo Vision: Algorithms and Applications. [link]. Acessado em 6 de abril de 2011.

Murarka, A. and Kuipers, B. (2009). A stereo vision based mapping algorithm for detecting inclines, drop-offs, and obstacles for safe local navigation. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 1646 –1653.

Murarka, A., Sridharan, M., and Kuipers, B. (2008). Detecting obstacles and drop-offs using stereo and motion cues for safe local motion. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 702 –708.

Murray, D. and Jennings, C. (1997). Stereo vision based mapping and navigation for mobile robots. In Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, volume 2, pages 1694 –1699 vol.2.

Rankin, A., Huertas, A., and Matthies, L. (2005). Evaluation of stereo vision obstacle detection algorithms for off-road autonomous navigation. In In AUVSI Symp. on Unmanned Systems.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In Int. J. Comput. Vision, volume 47, pages 7–42, Hingham, MA, USA. Kluwer Academic Publishers.

Sermanet, P., Hadsell, R., Scoffier, M., Muller, U., and LeCun, Y. (2008). Mapping and planning under uncertainty in mobile robots with long-range perception. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 2525 –2530.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., and Mahoney, P. (2006). Stanley: The robot that won the darpa grand challenge. In Periodicals, W., editor, Journal of Field Robotics, volume 23, pages 661–692.
Publicado
19/07/2011
MENDES, Caio César Teodoro; WOLF, Denis Fernando. Desvio de Obstáculos Utilizando um Método Estéreo Semi-global. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 8. , 2011, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2011 . p. 785-796. ISSN 2763-9061.