Comparative Study of Methods of Feature Extraction from Keypoints for the Classification of General Movements in Newborns
Resumo
A avaliação de movimentos gerais (GMA) é um método muito usado para prever disfunção motora, principalmente paralisia cerebral. Nos últimos anos, vários trabalhos têm feito progresso na automatização da GMA utilizando características extraídas manualmente de pontos-chaves identificados em vídeos, combinadas com modelos de aprendizado de máquina rasos ou profundos. Entretanto, não existe um consenso na literatura quanto ao melhor método de extração de características e há uma falta de trabalhos comparando métodos diferentes, especialmente para recém-nascidos. Nesse contexto, este trabalho visa comparar três métodos encontrados na literatura de extração de características a partir de pontos-chaves para a classificação de movimentos gerais de recém-nascidos.Referências
Doroniewicz, I., Ledwoń, D. J., Affanasowicz, A., Kieszczyńska, K., Latos, D., Matyja, M., Mitas, A. W., and Myśliwiec, A. (2020). Writhing movement detection in newborns on the second and third day of life using pose-based feature machine learning classification. Sensors, 20(21).
Einspieler, C., Peharz, R., and Marschik, P. B. (2016). Fidgety movements – tiny in appearance, but huge in impact. Jornal de Pediatria, 92(3, Supplement 1):S64–S70.
Einspieler, C. and Prechtl, H. F. R. (2005). Prechtl’s assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Mental Retardation and Developmental Disabilities Research Reviews, 11(1):61–67.
Gholamiangonabadi, D., Kiselov, N., and Grolinger, K. (2020). Deep neural networks for human activity recognition with wearable sensors: Leave-one-subject-out cross-validation for model selection. IEEE Access, 8:133985–133994.
Hesse, N., Bodensteiner, C., Arens, M., Hofmann, U. G., Weinberger, R., and Schroeder, A. S. (2018). Computer vision for medical infant motion analysis: State of the art and rgb-d data set. In ECCV Workshops.
Huang, X., Huang, C., Yin, W., Huang, H., Xie, Z., Huang, Y., Chen, M., Fan, X., Shang, X., Peng, Z., Wan, Y., Han, T., and Yi, M. (2024). Automatic quantitative intelligent assessment of neonatal general movements with video tracking. Displays, 82:102658.
Jahn, L., Flügge, S., Zhang, D., Poustka, L., Bölte, S., Wörgötter, F., Marschik, P. B., and Kulvicius, T. (2024). Comparison of marker-less 2d image-based methods for infant pose estimation.
Ji, S., Ma, D., Pan, L., Wang, W., Peng, X., Amos, J. T., Ingabire, H. N., Li, M., Wang, Y., Yao, D., and Ren, P. (2024). Automated prediction of infant cognitive development risk by video: A pilot study. IEEE Journal of Biomedical and Health Informatics, 28(2):690–701.
Leo, M., Bernava, G. M., Carcagnı̀, P., and Distante, C. (2022). Video-based automatic baby motion analysis for early neurological disorder diagnosis: State of the art and future directions. Sensors, 22(3).
Letzkus, L., Pulido, J., Adeyemo, A., Baek, S., and Zanelli, S. (2024). Machine learning approaches to evaluate infants’ general movements in the writhing stage—a pilot study. Scientific Reports, 14.
McCay, K. D., Ho, E. S. L., Shum, H. P. H., Fehringer, G., Marcroft, C., and Embleton, N. D. (2020). Abnormal infant movements classification with deep learning on pose-based features. IEEE Access, 8:51582–51592.
McCay, K. D., Hu, P., Shum, H. P. H., Woo, W. L., Marcroft, C., Embleton, N. D., Munteanu, A., and Ho, E. S. L. (2022). A pose-based feature fusion and classification framework for the early prediction of cerebral palsy in infants. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30:8–19.
Passmore, E., Kwong, A. L., Greenstein, S., Olsen, J. E., Eeles, A. L., Cheong, J. L. Y., Spittle, A. J., and Ball, G. (2024). Automated identification of abnormal infant movements from smart phone videos. PLOS Digital Health, 3(2):1–21.
Xia, L., Chen, C.-C., and Aggarwal, J. K. (2012). View invariant human action recognition using histograms of 3d joints. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pages 20–27.
Einspieler, C., Peharz, R., and Marschik, P. B. (2016). Fidgety movements – tiny in appearance, but huge in impact. Jornal de Pediatria, 92(3, Supplement 1):S64–S70.
Einspieler, C. and Prechtl, H. F. R. (2005). Prechtl’s assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Mental Retardation and Developmental Disabilities Research Reviews, 11(1):61–67.
Gholamiangonabadi, D., Kiselov, N., and Grolinger, K. (2020). Deep neural networks for human activity recognition with wearable sensors: Leave-one-subject-out cross-validation for model selection. IEEE Access, 8:133985–133994.
Hesse, N., Bodensteiner, C., Arens, M., Hofmann, U. G., Weinberger, R., and Schroeder, A. S. (2018). Computer vision for medical infant motion analysis: State of the art and rgb-d data set. In ECCV Workshops.
Huang, X., Huang, C., Yin, W., Huang, H., Xie, Z., Huang, Y., Chen, M., Fan, X., Shang, X., Peng, Z., Wan, Y., Han, T., and Yi, M. (2024). Automatic quantitative intelligent assessment of neonatal general movements with video tracking. Displays, 82:102658.
Jahn, L., Flügge, S., Zhang, D., Poustka, L., Bölte, S., Wörgötter, F., Marschik, P. B., and Kulvicius, T. (2024). Comparison of marker-less 2d image-based methods for infant pose estimation.
Ji, S., Ma, D., Pan, L., Wang, W., Peng, X., Amos, J. T., Ingabire, H. N., Li, M., Wang, Y., Yao, D., and Ren, P. (2024). Automated prediction of infant cognitive development risk by video: A pilot study. IEEE Journal of Biomedical and Health Informatics, 28(2):690–701.
Leo, M., Bernava, G. M., Carcagnı̀, P., and Distante, C. (2022). Video-based automatic baby motion analysis for early neurological disorder diagnosis: State of the art and future directions. Sensors, 22(3).
Letzkus, L., Pulido, J., Adeyemo, A., Baek, S., and Zanelli, S. (2024). Machine learning approaches to evaluate infants’ general movements in the writhing stage—a pilot study. Scientific Reports, 14.
McCay, K. D., Ho, E. S. L., Shum, H. P. H., Fehringer, G., Marcroft, C., and Embleton, N. D. (2020). Abnormal infant movements classification with deep learning on pose-based features. IEEE Access, 8:51582–51592.
McCay, K. D., Hu, P., Shum, H. P. H., Woo, W. L., Marcroft, C., Embleton, N. D., Munteanu, A., and Ho, E. S. L. (2022). A pose-based feature fusion and classification framework for the early prediction of cerebral palsy in infants. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30:8–19.
Passmore, E., Kwong, A. L., Greenstein, S., Olsen, J. E., Eeles, A. L., Cheong, J. L. Y., Spittle, A. J., and Ball, G. (2024). Automated identification of abnormal infant movements from smart phone videos. PLOS Digital Health, 3(2):1–21.
Xia, L., Chen, C.-C., and Aggarwal, J. K. (2012). View invariant human action recognition using histograms of 3d joints. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pages 20–27.
Publicado
29/09/2025
Como Citar
CRISTO, André Valente de; SANTOS, Eulanda Miranda dos; GIUSTI, Rafael; MENDONÇA, Ayrles Silva Gonçalves Barbosa.
Comparative Study of Methods of Feature Extraction from Keypoints for the Classification of General Movements in Newborns. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 22. , 2025, Fortaleza/CE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 1622-1633.
ISSN 2763-9061.
DOI: https://doi.org/10.5753/eniac.2025.13795.
