Previsão de receitas de ICMS do estado do Espírito Santo através de Seleção de Características em Cascata e técnicas de Aprendizado de Máquina

  • Marcelo Carmo Instituto Federal do Espírito Santo
  • Karin Komati Ifes Campus Serra
  • Francisco Boldt Instituto Federal do Espírito Santo

Resumo


Dois métodos para prever a arrecadação do Imposto sobre Circulação de Mercadorias e Serviços (ICMS) no estado do Espírito Santo (ES) são propostos. O primeiro usa uma rede neural artificial com uma seleção de características em cascata, e o segundo usa uma combinação de métodos estatísticos. O método de aprendizagem de máquina proposto superou a rede neural univariada de referencia, com previsões em uma janela deslizante de seis meses a frente para épocas de teste em 2018. O combinado de métodos estatísticos superou na média todos os demais nas 120 épocas testadas.

Palavras-chave: ICMS, Previsão, Seleção de Características em Cascata

Referências

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002). A survey on sensor networks. IEEE communications magazine, 40(8):102–114.

AlShawi, I. S., Yan, L., Pan, W., and Luo, B. (2012). Lifetime enhancement in wireless sensor networks using fuzzy approach and a-star algorithm. IEEE Sensors Journal, 12(10):3010–3018.

Bdiri, S. and Derbel, F. (2015). An ultra-low power wake-up receiver for realtime constrained wireless sensor networks. In Proceedings of the AMA Conferences, Nurenberg, Germany, pages 19–21.

Bouabdallah, N., Rivero-Angeles, M. E., and Sericola, B. (2009). Continuous monitoring using event-driven reporting for cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 58(7):3460–3479. de Carvalho, C. G. N., Gomes, D. G., de Souza, J. N., and Agoulmine, N. (2011). Multiple linear regression to improve prediction accuracy in wsn data reduction. In 2011 7th Latin American Network Operations and Management Symposium, pages 1–8. IEEE.

Deligiannakis, A. and Kotidis, Y. (2006). Exploiting spatio-temporal correlations for data processing in sensor networks. In International conference on GeoSensor Networks, pages 45–65. Springer.

Diwakaran, S., Perumal, B., and Devi, K. V. (2019). A cluster prediction model-based data collection for energy efficient wireless sensor network. The Journal of Supercomputing, 75(6):3302–3316.

Ghate, V. V. and Vijayakumar, V. (2018). Machine learning for data aggregation in wsn: A survey. International Journal of Pure and Applied Mathematics, 118(24):1–12.

Haykin, S. (2000). Redes neurais: princı́pios e prática. Bookman, 2th edition.

Hodge, V. J., O’Keefe, S., Weeks, M., and Moulds, A. (2015). Wireless sensor networks for condition monitoring in the railway industry: A survey. IEEE Transactions on Intelligent Transportation Systems, 3(16):1088–1106.

Jang, J. S. R., Sun, C. T., and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing—A Computational Approach to Learning and Machine Intelligenc. Prentice-Hall.

Khan, J. A., Qureshi, H. K., and Iqbal, A. (2015). Energy management in wireless sensor networks: A survey. Computers & Electrical Engineering, 41:159–176.

Maia, J. E. B., Brayner, A., and Rodrigues, F. (2013). A framework for processing complex queries in wireless sensor networks. ACM SIGAPP Applied Computing Review, 13(2):30–41.

Matos, T. B., Brayner, A., and Maia, J. E. B. (2010). Towards in-network data prediction in wireless sensor networks. In Proceedings of the 2010 ACM Symposium on Applied Computing, pages 592–596. ACM.

Micchelli, C. A. (1984). Interpolation of scattered data: distance matrices and conditionally positive definite functions. In Approximation theory and spline functions, pages 143–145. Springer.

Narayanan, R. P., Sarath, T. V., and Vineeth, V. V. (2016). Survey on motes used in wireless sensor networks: Perf & parametric anal. Wireless Sensor Network, 8(04):51.

Rault, T., Bouabdallah, A., and Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67:104–122.

Rawat, P., Singh, K. D., Chaouchi, H., and Bonnin, J. M. (2014). Wireless sensor networks: a survey on recent developments and potential synergies. The Journal of supercomputing, 68(1):1–48.

Durišić, M. P., Tafa, Z., Dimić, G., and Milutinović, V. (2012). A survey of military applications of wireless sensor networks. In Embedded Computing (MECO), 2012 Mediterranean Conference on, pages 196–199. IEEE.

Vuran, M. C., Akan, Ö. B., and Akyildiz, I. F. (2004). Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks, 45(3):245–259.

Xiao, H., Lu, C., and Ogai, H. (2017). A new low-power wireless sensor network for realtime bridge health diagnosis system. In Society of Instrument and Control Engineers of Japan (SICE), 2017 56th Annual Conference of the, pages 1565–1568. IEEE.

Yick, J., Mukherjee, B., and Ghosal, D. (2008). Wireless sensor network survey. Computer networks, 52(12):2292–2330.

Zhang, B., Liu, Y., He, J., and Zou, Z. (2013). An energy efficient sampling method through joint linear regression and compressive sensing. In 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), pages 447– 450. IEEE.
Publicado
15/10/2019
Como Citar

Selecione um Formato
CARMO, Marcelo; KOMATI, Karin; BOLDT, Francisco. Previsão de receitas de ICMS do estado do Espírito Santo através de Seleção de Características em Cascata e técnicas de Aprendizado de Máquina. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 16. , 2019, Salvador. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 118-129. DOI: https://doi.org/10.5753/eniac.2019.9277.