A comparative study involving classifiers and dimensionality reduction techniques applied to facial recognition
Abstract
This paper presents a comparative study between the Eigenfaces and Fisherfaces techniques combined with the KNN, SVM and MLP classifiers. The Eigenfaces and Fisherfaces techniques were used to project the images from the AT&T (The database of faces) and Extended Yale B databases into a new space in order to obtain a reduction in the dimensionality of these data. The classifiers mentioned used the data designed to perform the training task and subsequent identification of the test data classes. The results were very promising in both cases, but the MLP neural network with the Fisherfaces technique obtained the best results.
References
Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on pattern analysis and machine intelligence, 19(7):711–720.
Coppin, B. (2010). Inteligencia Artificial. LTC.
Eleyan, A. and Demirel, H. (2007). Pca and lda based neural networks for human face recognition. In Face Recognition. InTech.
Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. (2001). From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE transactions on pattern analysis and machine intelligence, 23(6):643–660.
Giron-Sierra, J. (2016). Digital Signal Processing with Matlab Examples, Volume 2: Decomposition, Recovery, Data-Based Actions. Signals and Communication Technology. Springer Singapore.
Lee, K., Ho, J., and Kriegman, D. (2005). Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(5):684–698.
Li, X., Ma, S., and Irwin, G. W. (2010). Life System Modeling and Intelligent Computing. Springer.
Martı́nez, A. M. and Kak, A. C. (2001). Pca versus lda. IEEE transactions on pattern analysis and machine intelligence, 23(2):228–233.
Müller, A. and Guido, S. (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media.
Pedregosa, F. et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
Silva, A. L. and Cintra, M. E. (2015). Reconhecimento de padrões faciais: Um estudo. In Encontro Nacional de Inteligência Artificial e Computacional, 2015, Proceedings ENIAC, pages 224–231.
Silva, G. N. d. (2009). Estudo da técnica pca (análise de componentes principais) e aufaces aplicadas ao reconhecimento de faces humanas.
Swets, D. L. and Weng, J. J. (1996). Using discriminant eigenfeatures for image retrieval. IEEE Transactions on pattern analysis and machine intelligence, 18(8):831–836.
Tan, K.-H., Kriegman, D. J., and Ahuja, N. (2002). Appearance-based eye gaze estimation. In Applications of Computer Vision, 2002.(WACV 2002). Proceedings. Sixth IEEE Workshop on, pages 191–195. IEEE.
Toygar, Ö. and Adnan, A. (2003). Face recognition using pca, lda and ica approaches on colored images. IU-Journal of Electrical & Electronics Engineering, 3(1):735–743.
Turk, M. and Pentland, A. (1991a). Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1):71–86.
Turk, M. A. and Pentland, A. P. (1991b). Face recognition using eigenfaces. In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Computer Society Conference on, pages 586–591. IEEE.
Zhang, X. and Gao, Y. (2009). Face recognition across pose: A review. Pattern Recognition, 42(11):2876–2896.
