Análises de dados de violência doméstica com o uso de Aprendizagem de Máquina: um Mapeamento Sistemático
Resumo
Existe um interesse bastante acentuado nos últimos anos pelas técnicas de aprendizagem de máquina para ajudar na análise de dados e extração de conhecimento das mais diversas áreas. Violência Doméstica é um problema social e de saúde humana, em que a utilização de tecnologia deve ser muito benéfica para apoio as diversas tomadas de decisões. Este artigo foi elaborado para contribuir e dar uma visão geral do estado atual das publicações realizadas a respeito do assunto e quais dados são mais relevantes para este tipo de análise Ao final, 38 publicações foram selecionadas para serem estudadas de um total de 6235 em quatro bibliotecas digitais cientificas reconhecida internacionalmente.
Referências
Amrit, C., Paauw, T., Aly, R., e Lavric, M. (2017). Identifying child abuse through text mining and machine learning. Expert Systems with Applications, 88, 402–418.
Berk, R. A., Sorenson, S. B., e Barnes, G. (2016). Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions. Journal of Empirical Legal Studies, 13(1), 94–115.
Bowen, E. (2011). An overview of partner violence risk assessment and the potential role of female victim risk appraisals. Aggression and Violent Behavior, 16(3).
Brignone, L., e Gomez, A. M. (2017). Double jeopardy: Predictors of elevated lethality risk among intimate partner violence victims seen in emergency departments. Preventive Medicine, 103, 20–25.
Clark, C. J., Ferguson, G., Shrestha, B., Shrestha, P. N., Oakes, J. M., Gupta, J., … Yount, K. M. (2018). Social norms and women’s risk of intimate partner violence in Nepal. Social Science and Medicine, 202, 162–169.
Connolly, C., Huzurbazar, S., e Routh-McGee, T. (2000). Multiple parties in domestic violence situations and arrest. Journal of Criminal Justice, 28(3), 181–188.
Cools, S., e Kotsadam, A. (2017). Resources and Intimate Partner Violence in Sub-Saharan Africa. World Development, 95, 211–230.
DUTTON, D. G., e KROPP, P. R. (2000). A review of domestic violence risk instruments. Trauma, Violence and Abuse, SAGE.
Gilchrist, G., Dennis, F., Radcliffe, P., Henderson, J., Howard, L. M., e Gadd, D. (2019). The interplay between substance use and intimate partner violence perpetration: A meta-ethnography. International Journal of Drug Policy, 65, 8–23.
Laeheem, K., e Boonprakarn, K. (2017). Factors predicting domestic violence among Thai Muslim married couples in Pattani province. Kasetsart J. Social Sciences.
López-Ossorio, J. J., González Álvarez, J. L., Buquerín Pascual, S., García, L. F., e Buela-Casal, G. (2017). Risk factors related to intimate partner violence police recidivism in Spain Juan. International Journal of Clinical and Health Psychology.
Matud, M. P. (2007).Dating Violence and Domestic Violence. Journal Adolescent Health
Petersen, K., Feldt, R., Mujtaba, S., e Mattsson, M. (2008). S. Mapping Studies in Software Engineering.
Pietri, M., e Bonnet, A. (2017). Analyses des représentations précoces et de la personnalité chez les victimes de violences conjugales. Revue Europeenne de Psychologie Appliquee, 67(4), 199–206.
Poelmans, J., Elzinga, P., Viaene, S., e Dedene, G. (2011). Formally analysing the concepts of domestic violence. Expert Systems with Applications, 38(4).
Raj, A., Silverman, J. G., Klugman, J., Saggurti, N., Donta, B., e Shakya, H. B. (2018). Longitudinal analysis of the impact of economic empowerment on risk for intimate partner violence among married women in rural Maharashtra, India. Social Science and Medicine, 196(August 2017), 197–203.
Roy Chowdhury, S., Bohara, A. K., e Horn, B. P. (2018). Balance of Power, Domestic Violence, and Health Injuries. World Development, 102, 18–29.
Sanz-Barbero, B., Linares, C., Vives-Cases, C., González, J. L., López-Ossorio, J. J., e Díaz, J. (2018). Heat wave and the risk of intimate partner violence. Science of the Total Environment, 644, 413–419.
Sorenson, S. B., e Spear, D. (2018). New data on intimate partner violence and intimate relationships: Implications for gun laws and federal data collection. P. Medicine.
Spencer, C. M., Stith, S. M., e Cafferky, B. (2019). Risk markers for physical intimate partner violence victimization: A meta-analysis. Aggression and Violent Behavior.
Van der Put, C. E., Gubbels, J., e Assink, M. (2019). Predicting domestic violence: A meta-analysis on the predictive validity of risk assessment tools. Aggression and Violent Behavior.
Wawrzyniak, Z. M., Borowik, G., Szczechla, E., Michalak, P., Pytlak, R., Cichosz, P., … Perkowski, E. (2018). Relationships between Crime and Everyday Factors.
Willie, T. C., Stockman, J. K., Perler, R., e Kershaw, T. S. (2018). Associations between intimate partner violence, violence-related policies, and HIV diagnosis rate among women in the United States. Annals of Epidemiology, 28(12), 881–885.
Wright, E. N., Hanlon, A., Lozano, A., e Teitelman, A. M. (2019). The impact of intimate partner violence, depressive symptoms, alcohol dependence, and perceived stress on 30-year cardiovascular disease risk among young adult women.