Árvores Ramsey-restritas mínimas
Resumo
Para grafos G, S e H, dizemos que G mr-flecha (S,H) se toda coloração das arestas de G tem uma cópia monocromática de S ou uma cópia multicolorida de H. Provamos que se S = K_{1,3} e H é uma árvore binária completa de altura h, então o tamanho da menor árvore T que mr-flecha(S,H) é 2^{(1/2+o(1))h^2}.
Palavras-chave:
teoria de Ramsey, colorações restritas, árvores multicoloridas
Referências
Alon, N., Jiang, T., Miller, Z., and Pritikin, D. (2003). Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints. Random Structures & Algorithms, 23(4):409–433.
Collares, M., Kohayakawa, Y., Moreira, C. G., and Mota, G. O. (2021). Constrained colourings of random graphs. Procedia Computer Science. To appear.
Gyárfás, A., Lehel, J., and Schelp, R. H. (2007). Finding a monochromatic subgraph or arainbow path. Journal of Graph Theory, 54(1):1–12.
Jamison, R. E., Jiang, T., and Ling, A. C. (2003). Constrained ramsey numbers of graphs. Journal of Graph Theory, 42(1):1–16.
Loh, P.-S. and Sudakov, B. (2009). Constrained ramsey numbers. Combinatorics, Probability and Computing, 18(1-2):247–258.
Collares, M., Kohayakawa, Y., Moreira, C. G., and Mota, G. O. (2021). Constrained colourings of random graphs. Procedia Computer Science. To appear.
Gyárfás, A., Lehel, J., and Schelp, R. H. (2007). Finding a monochromatic subgraph or arainbow path. Journal of Graph Theory, 54(1):1–12.
Jamison, R. E., Jiang, T., and Ling, A. C. (2003). Constrained ramsey numbers of graphs. Journal of Graph Theory, 42(1):1–16.
Loh, P.-S. and Sudakov, B. (2009). Constrained ramsey numbers. Combinatorics, Probability and Computing, 18(1-2):247–258.
Publicado
18/07/2021
Como Citar
COLLARES, Maurício; FERNANDES, Antônio K. B.; MOTA, Guilherme O.; VICENTE, Hugo M..
Árvores Ramsey-restritas mínimas. In: ENCONTRO DE TEORIA DA COMPUTAÇÃO (ETC), 6. , 2021, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 46-49.
ISSN 2595-6116.
DOI: https://doi.org/10.5753/etc.2021.16377.