Matheurísticas para o problema de roteamento de veículos com prêmios
Resumo
Problemas de roteamento de veículos com prêmios são problemas de otimização que visam maximizar lucros sem a necessidade de atender todos os clientes. Neste trabalho, avalia-se o uso de matheurísticas propostas para o problema da mochila com restrições de conflitos para a construção de soluções para duas variantes do problema de roteamento com prêmios.
Referências
Alves, A. R. and Hoshino, E. A. (2022). Matheurísticas para o problema da mochila com restrição de conflitos. Anais do Simpósio Brasileiro de Pesquisa Operacional, 54.
Archetti, C., Bianchessi, N., and Speranza, M. G. (2013). Optimal solutions for routing problems with profits. Discrete Applied Mathematics, 161(4-5):547–557.
Archetti, C., Feillet, D., Hertz, A., and Speranza, M. G. (2009). The capacitated team orienteering and profitable tour problems. Journal of the Operational Research Society, 60:831–842.
Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem. Operations research, 59(5):1269–1283.
Bolduc, M.-C., Renaud, J., Boctor, F., and Laporte, G. (2008). A perturbation metaheuristic for the vehicle routing problem with private fleet and common carriers. Journal of the Operational Research Society, 59(6):776–787.
Bulhoes, T., Ha, M. H., Martinelli, R., and Vidal, T. (2018). The vehicle routing problem with service level constraints. European Journal of Operational Research, 265(2):544–558.
Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Math. Progam, 91:201–213.
Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher, S. J., Miltenberger, M., Müller, B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt, J. T., and Witzig, J. (2016). The scip optimization suite 3.2. Technical Report 15-60, ZIB, Takustr. 7, 14195 Berlin.
IBM (2019). IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, Version 12 Release 6. IBM Corp.
Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2020). A generic exact solver for vehicle routing and related problems. Mathematical Programming, 183:483–523.
Yamada, T., Kataoka, S., and Watanabe, K. (2002). Heuristic and exact algorithms for the disjunctively constrained knapsack problem. Information Processing Society of Japan Journal, 43(9).
Archetti, C., Bianchessi, N., and Speranza, M. G. (2013). Optimal solutions for routing problems with profits. Discrete Applied Mathematics, 161(4-5):547–557.
Archetti, C., Feillet, D., Hertz, A., and Speranza, M. G. (2009). The capacitated team orienteering and profitable tour problems. Journal of the Operational Research Society, 60:831–842.
Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem. Operations research, 59(5):1269–1283.
Bolduc, M.-C., Renaud, J., Boctor, F., and Laporte, G. (2008). A perturbation metaheuristic for the vehicle routing problem with private fleet and common carriers. Journal of the Operational Research Society, 59(6):776–787.
Bulhoes, T., Ha, M. H., Martinelli, R., and Vidal, T. (2018). The vehicle routing problem with service level constraints. European Journal of Operational Research, 265(2):544–558.
Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Math. Progam, 91:201–213.
Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher, S. J., Miltenberger, M., Müller, B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt, J. T., and Witzig, J. (2016). The scip optimization suite 3.2. Technical Report 15-60, ZIB, Takustr. 7, 14195 Berlin.
IBM (2019). IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, Version 12 Release 6. IBM Corp.
Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2020). A generic exact solver for vehicle routing and related problems. Mathematical Programming, 183:483–523.
Yamada, T., Kataoka, S., and Watanabe, K. (2002). Heuristic and exact algorithms for the disjunctively constrained knapsack problem. Information Processing Society of Japan Journal, 43(9).
Publicado
06/08/2023
Como Citar
L. NETO, Francisco F.; PEDROTTI, Vagner; HOSHINO, Edna A..
Matheurísticas para o problema de roteamento de veículos com prêmios. In: ENCONTRO DE TEORIA DA COMPUTAÇÃO (ETC), 8. , 2023, João Pessoa/PB.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2023
.
p. 185-189.
ISSN 2595-6116.
DOI: https://doi.org/10.5753/etc.2023.230071.