Sobre Finura Própria de Grafos

  • Moysés S. Sampaio Jr. UFRJ
  • Fabiano S. Oliveira UERJ
  • Jayme L. Szwarcfiter UFRJ / UERJ

Resumo


Both graph classes of k-thin and proper k-thin graphs have recently been introduced generalizing interval and unit interval graphs, respectively. The complexity of the recognition of k-thin and proper k-thin are open, even for fixed k ≥ 2. In this work, we introduce a subclass of the proper 2-thin graphs, called proper 2-thin of precedence. For this class, we present a characterization and an efficient recognition algorithm.

Referências

Bonomo, F., Estrada, D. (2017). On the thinness and proper thinness of a graph. CoRR, abs/1704.00379.

Mannino, C., Oriolo, G., Ricci, F.„ Chandran, S. (2007). The stable set problem and the thinness of a graph. Operations Research Letters, 35:1–9.

Olariu, S. (1991). An optimal greedy heuristic to color interval graphs. Information Processing Letters, 37:21–25.

Roberts, F. (1969). Indifference graphs. Em Harary, F., editor, Proof Techniques in Graph Theory, p. 139–146. Academic Press, New York.
Publicado
26/07/2018
SAMPAIO JR., Moysés S.; OLIVEIRA, Fabiano S.; SZWARCFITER, Jayme L.. Sobre Finura Própria de Grafos. In: ENCONTRO DE TEORIA DA COMPUTAÇÃO (ETC), 3. , 2018, Natal. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 117-120. ISSN 2595-6116. DOI: https://doi.org/10.5753/etc.2018.3165.