Tight bounds for gap-labellings

  • C. A. Weffort-Santos UNICAMP
  • C. N. Campos UNICAMP
  • R. C. S. Schouery UNICAMP

Resumo


An ordered pair (π, cπ) is said to be a gap-[k]-edge-labelling (gap-[k]-vertex-labelling) if π is an edge-labelling (vertex-labelling) on the set {1, . . . , k}, and cπ is a proper vertex-colouring induced by a gap-function based on π. Gap-[k]-edge-labellings and gap-[k]-vertex-labellings were first introduced by M. Tahraoui et al. [7] and A. Dehghan et al. [2], respectively. The edge-gap number (vertex-gap number) is the least k for which there exists a gap-[k]-edge-labelling (gap-[k]-vertex-labelling) of a graph. In this work, we study the edge-gap number, χgE, and the vertex-gap number, χgV, of cycles, crowns and wheels.

Referências

A. Brandt, B. Moran, K. Nepal, F. Pfender, D. Sigler, Local gap coloring from edge labelings, Australasian Journal of Combinatorics 65(3) (2016), 200-211.

A. Dehghan, M.-R. Sadeghi and A. Ahad, Algorithmic complexity of proper labeling problems, Theoretical Computer Science 495 (2013), 25 - 36.

J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics DS6 (2016)

A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium) (1967), 394-355.

R. Scheidweiler, E. Triesch, New estimates for the gap chromatic number, SIAM Journal of Discrete Mathematics 328 (2014), 42-53.

R. Scheidweiler, E. Triesch, Gap-neighbour-distinguishing colourings, Journal of Combinatorial Mathematics and Combinatorial Computing, 94 (2015), 205-214.

M. A. Tahraoui, E. Duchene, H. Kheddouci, Gap vertex-distinguishing edge colourings of graphs, Discrete Mathematics 312 (20) (2012), 3011 - 3025.
Publicado
02/07/2017
WEFFORT-SANTOS, C. A.; CAMPOS, C. N.; SCHOUERY, R. C. S.. Tight bounds for gap-labellings. In: ENCONTRO DE TEORIA DA COMPUTAÇÃO (ETC), 2. , 2017, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 69-72. ISSN 2595-6116. DOI: https://doi.org/10.5753/etc.2017.3194.