Ramsey Goodness of paths versus K3,t
Abstract
Given graphs G and H, we say that G is H-good if the Ramsey number R(G,H) equals the trivial lower bound (|G|−1)(χ(H)−1)+σ(H), where χ(H) denotes the usual chromatic number of H, and σ(H) denotes the minimum size of a color class in a χ(H)-coloring of H. In 2013, Allen, Brightwell, and Skokan conjectured that Pn is H-good for every n ≥ χ(H)|H|. A result of Pokrovskiy and Sudakov (2017) implies that this conjecture holds when χ(H) ≥ 4. We study the case χ(H) = 2 and show that Pn is H-good for n ≥ 2 · |V(H)|, with H ⊆ K3,t.
References
Balla, I., Pokrovskiy, A., and Sudakov, B. (2018). Ramsey goodness of bounded degree trees. Combinatorics, Probability and Computing, 27(3):289–309.
Botler, F., Moreira, L., and de Souza, J. P. (2024). Ramsey goodness of paths and unbalanced graphs. arXiv preprint arXiv:2410.19942.
Botler, F. H., Collares, M., Martins, T., Mendonça, W., Morris, R., and Mota, G. O. (2022). Combinatória. IMPA.
Brandt, S., Broersma, H., Diestel, R., and Kriesell, M. (2006). Global connectivity and expansion: long cycles and factors in F-connected graphs. Combinatorica, 26:17–36.
Burr, S. A. (1981). Ramsey numbers involving graphs with long suspended paths. Journal of the London Mathematical Society, 2(3):405–413.
Burr, S. A. and Erdős, P. (1983). Generalizations of a Ramsey-theoretic result of Chvátal. Journal of Graph Theory, 7(1):39–51.
Chvátal, V. (1977). Tree-complete graph Ramsey numbers. Journal of Graph Theory, 1(1):93–93.
Conlon, D., Fox, J., and Sudakov, B. (2015). Recent developments in graph Ramsey theory. Surveys in combinatorics, 424(2015):49–118.
Erdős, P., Faudree, R. J., Rousseau, C. C., and Schelp, R. H. (1985). Multipartite graph—sparse graph Ramsey numbers. Combinatorica, 5:311–318.
Moreira, L. (2021). Ramsey goodness of clique versus paths in random graphs. SIAM Journal on Discrete Mathematics, 35(3):2210–2222.
Nikiforov, V. and Rousseau, C. C. (2009). Ramsey goodness and beyond. Combinatorica, 29:227–262.
Pokrovskiy, A. and Sudakov, B. (2017). Ramsey goodness of paths. Journal of Combinatorial Theory, Series B, 122:384–390.
Pokrovskiy, A. and Sudakov, B. (2020). Ramsey goodness of cycles. SIAM Journal on Discrete Mathematics, 34(3):1884–1908.
