NP-Hardness and Approximation Results for the Minimally Labeled k-Spanning Forest Problem
Abstract
Given an edge-labeled graph G, the minimum labeling spanning k-forest problem consists in finding a spanning forest F of G with minimum number of labels and number of components bounded by k. In this work, we present a proof of the NP-completeness of the problem in split graphs and propose an approximation algorithm for solving it.References
Cerulli, R., Ambrosio, C., Serra, D., and Sorgente, C. (2024). The budgeted labeled minimum spanning tree problem. Mathematics, 12(2).
Cerulli, R., Fink, A., and Gentili, M. (2006). Extensions of the minimum labelling spanning tree problem. Journal of Telecommunications and Information Technology, 26(4):39–45.
Chang, R.-S. and Leu, S.-J. (1997). The minimum labeling spanning trees. Inf. Process. Lett., 63(5):277–282.
Chwatal, A. M., Raidl, G. R., and Dietzel, O. (2007). Compressing fingerprint templates by solving an extended minimum label spanning tree problem.
Corrêa, L. and Campêlo, M. (2024). O problema da k-floresta geradora minimamente rotulada. In Anais do LVI SBPO, Fortaleza.
Fellows, M. R., Guo, J., and Kanj, I. (2010). The parameterized complexity of some minimum label problems. Journal of Computer and System Sciences, 76(8):727–740.
Krumke, S. O. and Wirth, H.-C. (1998). On the minimum label spanning tree problem. Information Processing Letters, 66(2):81–85.
West, D. (1996). Introduction to Graph Theory. Introduction to Graph Theory. Prentice Hall.
Xiong, Y., Golden, B., and Wasil, E. (2005). Worst-case behavior of the mvca heuristic for the minimum labeling spanning tree problem. Operations Research Letters, 33(1):77–80.
Cerulli, R., Fink, A., and Gentili, M. (2006). Extensions of the minimum labelling spanning tree problem. Journal of Telecommunications and Information Technology, 26(4):39–45.
Chang, R.-S. and Leu, S.-J. (1997). The minimum labeling spanning trees. Inf. Process. Lett., 63(5):277–282.
Chwatal, A. M., Raidl, G. R., and Dietzel, O. (2007). Compressing fingerprint templates by solving an extended minimum label spanning tree problem.
Corrêa, L. and Campêlo, M. (2024). O problema da k-floresta geradora minimamente rotulada. In Anais do LVI SBPO, Fortaleza.
Fellows, M. R., Guo, J., and Kanj, I. (2010). The parameterized complexity of some minimum label problems. Journal of Computer and System Sciences, 76(8):727–740.
Krumke, S. O. and Wirth, H.-C. (1998). On the minimum label spanning tree problem. Information Processing Letters, 66(2):81–85.
West, D. (1996). Introduction to Graph Theory. Introduction to Graph Theory. Prentice Hall.
Xiong, Y., Golden, B., and Wasil, E. (2005). Worst-case behavior of the mvca heuristic for the minimum labeling spanning tree problem. Operations Research Letters, 33(1):77–80.
Published
2025-07-20
How to Cite
CORRÊA, Kennedy; CAMPÊLO, Manoel.
NP-Hardness and Approximation Results for the Minimally Labeled k-Spanning Forest Problem. In: PROCEEDINGS OF THE THEORY OF COMPUTATION MEETING (ETC), 10. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 65-69.
ISSN 2595-6116.
DOI: https://doi.org/10.5753/etc.2025.8860.
