On the Hamiltonicity of Timbral Graphs
Abstract
We study the existence of a Hamiltonian cycle in timbral graphs, presenting a complete characterization of which timbral graphs are Hamiltonian.References
Akhmedov, A. and Winter, M. (2014). Chordal and timbral morphologies using hamiltonian cycles. Journal of Mathematics and Music, 8(1):1–24.
Chen, C. C. and Quimpo, N. F. (1981). On strongly hamiltonian abelian group graphs. In McAvaney, K. L., editor, Combinatorial Mathematics VIII, volume 884 of Lecture Notes in Mathematics, pages 23–34. Springer.
Gravier, S. (1997). Hamiltonicity of the cross product of two hamiltonian graphs. Discrete Mathematics, 170(1–3):253–257.
Marušič, D. (1983). Hamiltonian circuits in cayley graphs. Discrete Mathematics, 46(1):49–54.
Savage, C. (1997). A survey of combinatorial gray codes. SIAM Review, 39(4):605–629.
Chen, C. C. and Quimpo, N. F. (1981). On strongly hamiltonian abelian group graphs. In McAvaney, K. L., editor, Combinatorial Mathematics VIII, volume 884 of Lecture Notes in Mathematics, pages 23–34. Springer.
Gravier, S. (1997). Hamiltonicity of the cross product of two hamiltonian graphs. Discrete Mathematics, 170(1–3):253–257.
Marušič, D. (1983). Hamiltonian circuits in cayley graphs. Discrete Mathematics, 46(1):49–54.
Savage, C. (1997). A survey of combinatorial gray codes. SIAM Review, 39(4):605–629.
Published
2025-07-20
How to Cite
CARDOSO, Luan S.; CERIOLI, Márcia R.; VIANA, Petrucio.
On the Hamiltonicity of Timbral Graphs. In: PROCEEDINGS OF THE THEORY OF COMPUTATION MEETING (ETC), 10. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 100-103.
ISSN 2595-6116.
DOI: https://doi.org/10.5753/etc.2025.9111.
