Keyword Search over the COVID-19 Data

  • Yenier Torres Izquierdo Pontifícia Universidade Católica do Rio de Janeiro http://orcid.org/0000-0003-0971-8572
  • Grettel Monteagudo Garcia Pontifícia Universidade Católica do Rio de Janeiro
  • Melissa Lemos Pontifícia Universidade Católica do Rio de Janeiro
  • Alexandre Novello Pontifícia Universidade Católica do Rio de Janeiro
  • Bruno Novelli Pontifícia Universidade Católica do Rio de Janeiro
  • Cleber Damasceno Pontifícia Universidade Católica do Rio de Janeiro
  • Luiz André P. P. Leme Universidade Federal Fluminense
  • Marco Antonio Casanova Pontifícia Universidade Católica do Rio de Janeiro

Resumo


Keyword search is typically associated with information retrieval systems. However, recently, keyword search has been expanded to relational databases and RDF datasets, as an attractive alternative to traditional database access. With this motivation, this paper first introduces a platform for data and knowledge retrieval, called DANKE, concentrating on the keyword search component. It then describes an application that uses DANKE to implement keyword search over two COVID-19 data scenarios.

Palavras-chave: keyword search, COVID-19, data retrieval, knowledge retrieval

Referências

Bast, H., Buchhold, B., Haussmann, E. Semantic search on text and knowledge bases. Found. and Trends® in Info. Retr., 10(1), (2016), 119-271. DOI: 10.1561/1500000032

Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., Velegrakis, Y. Combining user and database perspective for solving keyword queries over relational databases. Inf. Syst. 55, C (Jan. 2016), 1-19. DOI: 10.1016/j.is.2015.07.005

García, G.M., Izquierdo, Y.T., Menendez, E., Dartayre, F., Casanova, M.A. RDF Key-word-based Query Technology Meets a Real-World Dataset. In: Proc. 20th Int’l. Conf. on Extending Database Technology (EDBT 2017), pp. 656-667

García, G.M. A Keyword-based Query Processing Method for Datasets with Schemas. Thesis presented to the Graduate Program in Informatics, PUC-Rio (March 2020). DOI: https://doi.org/10.17771/PUCRio.acad.48728

Han, S., Zou, L., Yu, X., Zhao, D. Keyword Search on RDF Graphs - A Query Graph Assembly Approach. In: Proc. 2017 ACM Conf. on Information and Knowledge Management (CIKM 2017), pp. 227-236. DOI: 10.1145/3132847.3132957

Izquierdo, Y.T., García, G.M., Menendez, E.S., Casanova, M.A., Dartayre, F., Levy, C.H., QUIOW: A Keyword-Based Query Processing Tool for RDF Datasets and Relational Databases. In: DEXA 2018, LNCS 11030 (2018), pp. 259-269. DOI: 10.1007/978-3-319-98812-2_22

Izquierdo, Y.T., Casanova, M.A., García, G.M., Dartayre, F., Levy, C.H. Keyword Search over Federated RDF Datasets. In: Proc. ER Forum 2017 and ER Demo track co-located with the 36th Int’l. Conf. on Conceptual Modelling (ER 2017), CEUR Workshop Proc., Vol. 1979, CEUR-WS.org

Mello, L.E. et al. Opening Brazilian COVID-19 patient data to support world research on pandemics (July 30, 2020). DOI: 10.5281/zenodo.3966427

Oliveira, P., Silva, A., Moura, E. Ranking Candidate Networks of relations to improve keyword search over relational databases. In: Proc. IEEE 31st Int’l. Conf. on Data Engineering (ICDE 2015), pp. 399-410. DOI: 10.1109/ICDE.2015.7113301

Tran, T., Wang, H., Rudolph, S., Cimiano, P. Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data. In: Proc. 2009 IEEE Int’l. Conf. on Data Engineering (ICDE 2009), pp. 405-416. DOI: 10.1109/ICDE.2009.119
Publicado
28/09/2020
TORRES IZQUIERDO, Yenier; MONTEAGUDO GARCIA, Grettel; LEMOS, Melissa; NOVELLO, Alexandre; NOVELLI, Bruno; DAMASCENO, Cleber; LEME, Luiz André P. P. ; CASANOVA, Marco Antonio. Keyword Search over the COVID-19 Data. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 35. , 2020, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 205-210. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2020.13642.