Inferencing Relational Database Tuning Actions with OnDBTuning Ontology

  • Luciana de Sá Silva Perciliano Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Veronica dos Santos Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Fernanda Baião Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Edward Hermann Haeusler Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Sérgio Lifschitz Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Ana Carolina Almeida Universidade do Estado do Rio de Janeiro (UERJ)


OnDBTuning is a relational database (automatic) tuning ontology. Ontologies are software artifacts that represent specific domain knowledge and can infer new knowledge. However, most cases involve only a formal and static description of concepts. Moreover, as database tuning involves many rules-ofthumb and black-box algorithms, it becomes challenging to describe these inference procedures. This research work first presents the OnDBTuning ontology solution focusing on the inference of tuning actions. Next, we provide an actual implementation using SPARQL Inferencing Notation (SPIN). Finally, we discuss a practical evaluation for index recommendation.
Palavras-chave: Ontology, Tuning, SPIN, SPARQL


Aken, D. V., Yang, D., Brillard, S., Fiorino, A., Zhang, B., Billian, C., and Pavlo, A. (2021). An inquiry into machine learning-based automatic configuration tuning services on real-world database management systems. PVLDB, pages 1241–1253.

Almeida, A. C., Baião, F. A., Lifschitz, S., Schwabe, D., and Campos, M. L. M. (2021). Tun-ocm : A model-driven approach to support database tuning decision making. Decision Support Systems, page 113538.

Almeida, A. C., Campos, M. L. M., Baião, F. A., Lifschitz, S., de Oliveira, R. P., and Schwabe, D. (2019). An ontological perspective for database tuning heuristics. In Int. Conf. on Conceptual Modeling (ER), pages 240–254. Springer.

Bassiliades, N. (2020). A tool for transforming semantic web rule language to SPARQL infererecing notation. Intl. Journal Semantic Web Information Systems, pages 87–115.

de Almeida, A. C. B. (2013). Framework para apoiar a sintonia fina de banco de dados (in portuguese). PhD thesis, PUC-Rio.

Doulaverakis, C., Koutkias, V., Antoniou, G., and Kompatsiaris, I. (2016). Applying sparql-based inference and ontologies for modelling and execution of clinical practice guidelines: a case study on hypertension management. In Knowledge Representation for Health Care, pages 90–107. Springer.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, pages 199–220.

Morelli, E. T., Almeida, A. C., Lifschitz, S., Monteiro, J. M., and Machado, J. C. (2012). Autonomous re-indexing. In Symp. on Applied Computing, pages 893–897. ACM.

Promkot, A.-n., Arch-int, S., and Arch-int, N. (2019). The personalized traditional medicine recommendation system using ontology and rule inference approach. In 4th Intl. Conf. on Computer and Communication Systems, pages 96–104. IEEE.

Shasha, D. E. and Bonnet, P. (2002). Database Tuning-Principles, Experiments, and Troubleshooting Techniques. Elsevier.

Staab, S. and Studer, R. (2010). Handbook on ontologies. Springer Sci & Bus. Media.

Suganya, G. and Porkodi, R. (2018). Ontology based information extraction-a review. In Intl. Conf. on Current Trends towards Converging Technologies, pages 1–7. IEEE.

Valentin, G., Zuliani, M., Zilio, D. C., Lohman, G., and Skelley, A. (2000). Db2 advisor: an optimizer smart enough to recommend its own indexes. In 16th Intl. Conf. on Data Engineering, pages 101–110. IEEE Computer Society.

Zhang, J., Zhou, K., Li, G., Liu, Y., Xie, M., Cheng, B., and Xing, J. (2021). Cdbtune+: An efficient deep reinforcement learning-based automatic cloud database tuning system. VLDB, pages 1–29.
PERCILIANO, Luciana de Sá Silva; DOS SANTOS, Veronica; BAIÃO, Fernanda; HAEUSLER, Edward Hermann; LIFSCHITZ, Sérgio; ALMEIDA, Ana Carolina. Inferencing Relational Database Tuning Actions with OnDBTuning Ontology. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 36. , 2021, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 157-168. ISSN 2763-8979. DOI: