HELIX: A data-driven characterization of Brazilian land snails

  • Marcelo N. Almeida Universidade Federal Fluminense (UFF)
  • Rodolfo Alves de Oliveira Universidade Federal Fluminense (UFF)
  • Luiz Olmes Universidade Federal de Itajubá (UNIFEI)
  • Gustavo S. Semaan Universidade Federal Fluminense (UFF) http://orcid.org/0000-0003-2873-2628
  • Daniel de Oliveira Universidade Federal Fluminense (UFF) http://orcid.org/0000-0001-9346-7651
  • Lúcio Santos Instituto Federal do Norte de Minas Gerais (IFNMG)
  • Marcos Bedo Universidade Federal Fluminense (UFF)

Resumo


Decision-support systems benefit from hidden patterns extracted from digital information. In the specific domain of gastropod characterization, morphometrical measurements support biologists in the identification of land snail specimens. Although snails can be easily identified by their excretory and reproductive systems, the after-death mollusk body is commonly inaccessible because of either soft material deterioration or fossilization. This study aims at characterizing Brazilian land snails by morphometrical data features manually taken from the shells. In particular, we examined a dataset of shells by using different learning models that labeled snail specimens with a precision up to 97.5% (F1-Score = .975, CKC = .967 and ROC Area = .998). The extracted patterns describe similarities and trends among land snail species and indicates possible outliers physiologies due to climate traits and breeding. Finally, we show some morphometrical characteristics dominate others according to different feature selection biases. Those data-based patterns can be applied to fast land snail identification whenever their bodies are unavailable, as in the recurrent cases of lost shells in nature or private and museum collections.
Palavras-chave: Quantitative Methods, Data analysis

Referências

Aggarwal, C. (2015). Data mining: The textbook. Springer.

Chávez, E., Navarro, G., Baeza-Yates, R., and Marroquín, J. (2001). Searching in metric spaces. In Computing Surveys, volume 33, pages 273–321. ACM.

Fagin, R., Kumar, R., and Sivakumar, D. (2003). Efficient similarity search and classification via rank aggregation. In ACM SIGMOD, pages 301–312.

Hirano, T., Wada, S., Mori, H., Uchida, S., Saito, T., and Chiba, S. (2018). Genetic and morphometric rediscovery of an extinct land snail on oceanic islands. J. of Molluscan S., 84(2):148–156.

Queiroz, K. (2007). Species concepts and species delimitation. Sys. Bio., 56(6):879–886.

Quenu, M. and et. al (2020). Geometric morphometrics and ML challenge currently accepted species limits of the land snail Placostylus. J. M. Studies, 86(1):35–41.

Roffo, G. (2017). Ranking to learn and learning to rank: On the role of ranking in pattern recognition applications. arXiv preprint arXiv:1706.05933.

Simone, L. R. L. d. (2006). Land and freshwater molluscs of Brazil. Museu de Zoologia, Universidade de São Paulo.

Slapcinsky, J. and Kraus, F. (2016). Revision of partulidae of Palau, with description of a new genus for an unusual ground-dwelling species. ZooKeys, 86(614):27.

Ueta, M. T. (1980). Estudo morfométrico da concha de Lymnaea columella. R. Soc. Bras. Medicina Tropical, 13(1):119–141.

Yeung, N. and et. al (2020). Overlooked but not forgotten: the first new extant species of hawaiian land snail described in 60 years, Auriculella gagneorum. ZooKeys, 950:1.
Publicado
04/10/2021
ALMEIDA, Marcelo N.; DE OLIVEIRA, Rodolfo Alves; OLMES, Luiz; SEMAAN, Gustavo S.; DE OLIVEIRA, Daniel; SANTOS, Lúcio; BEDO, Marcos. HELIX: A data-driven characterization of Brazilian land snails. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 36. , 2021, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 319-324. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2021.17892.