Um Método Baseado em Fingerprint de Sinais e Aprendizado de Máquina para Identificação de Estações Terrenas Interferentes
Resumo
Redes via Satélite são essenciais no mundo e, por vezes, se apresentam como o único meio de conectar regiões de difícil acesso. Tais redes utilizam comunicação sem fio e são afetadas por sinais interferentes, o que torna relevante identificar a origem desses sinais. A principal técnica para identificar a origem de sinais interferentes é a geolocalização, que apresenta um grupo de estações terrenas suspeitas. Este trabalho propõe um método que pode reduzir o número de estações elencadas pela técnica da geolocalização, ao aplicar modelos de classificação a características de Radio Frequency Fingerprint extraídas dos sinais. O método proposto obteve acurácia superior a 98% em experimentos com dados reais envolvendo 64.800 instâncias de sinais e 6 estações terrenas.
Referências
Azevedo, J., Barcellos, A. L., Mendes, A. C., de Oliveira, D., Vidal, P. C., and Bedo, M. (2021). Sat-espec: Análise e coleta de dados da transmissão de estações terrenas de uma rede satélite. In Anais do III Dataset Showcase Workshop, pages 43-52. SBBD.
Bitar, N., Muhammad, S., and Refai, H. H. (2018). Wireless technology identification using deep convolutional neural networks. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 1:1-6.
Brik, V. et al. (2008). Wireless device identification with radiometric signatures. 14th ACM international conference on Mobile computing and networking, 1:116-127.
Deng, S. et al. (2017). Radio frequency fingerprint extraction based on multidimension permutation entropy. International Journal of Antennas and Propagation, 2017.
Faceli, K. et al. (2021). Inteligência Artificial: Uma abordagem de aprendizado de máquina. Grupo Gen-LTC.
Gahlawat, S. (2020). Investigation of rf fingerprinting approaches in gnss. Master’s thesis, Tampere University, Faculty of Information Technology, Finlândia.
Hao, C. et al. (2020). Interference geolocation in satellite communications systems: An overview. IEEE Vehicular Technology Magazine, 16(1):66-74.
Henarejos, P. et al. (2019). Deep learning for experimental hybrid terrestrial and satellite interference management. 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1:1-5.
Huang, H. et al. (2020). Fcn-based carrier signal detection in broadband power spectrum. IEEE Access, 8:113042-113051.
Kennedy, I. et al. (2008). Radio transmitter fingerprinting: A steady state frequency domain approach. 2008 IEEE 68th Vehicular Technology Conference, 1:1-5.
Laignier, P. and Fortes, R. (2009). Introdução à história da comunicação. Ed. E-papers.
Li, Y., Chen, X., Lin, Y., Srivastava, G., and Liu, S. (2020). Wireless transmitter identification based on device imperfections. IEEE Access, 8:59305-59314.
Pratt, T. and Allnutt, J. (2020). Satellite Communication. 2020 John Wiley & Sons Ltd, Virginia, USA, 3 edition.
Smith, R. et al. (2021). An o-ran approach to spectrum sharing between commercial 5g and government satellite systems. In MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM), pages 739-744. IEEE.
Soltanieh, N. et al. (2020). A review of radio frequency fingerprinting techniques. IEEE Journal of Radio Frequency Identification, 4(3):222-233.
UIT (2010). Use of appendix 10 of the radio regulation to convey information related to emissions from both gso and non-gso space stations including geolocation information. 2022-05-31.