Visualização Interativa da Evolução de Grafos de Conhecimento
Resumo
Grafos de conhecimento são artefatos essenciais na representação estruturada de dados em diversos domínios de aplicação. Grafos de conhecimento temporais expressam um conjunto de tais grafos no tempo. Uma necessidade relevante reside na análise e tomada de decisões a partir dessas estruturas. Estudamos a concepção de uma ferramenta para a visualização interativa da evolução de grafos de conhecimento. Implementamos TKGEvolViewer, uma ferramenta que possibilita a exploração gráfica de grafos de conhecimento temporais a partir de valores de métricas codificadas em suas estruturas. Nossos resultados permitem a condução de análises visuais sobre os grafos através de um modal gráfico, filtrando informações obtidas de análises predefinidas.
Palavras-chave:
Grafos de Conhecimento, Grafos de Conhecimento Temporais, Visualização de Dados
Referências
Arnaout, H. and Elbassuoni, S. (2018). Effective Searching of RDF Knowledge Graphs. Journal of Web Semantics, 48:66-84.
Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2017). A Taxonomy and Survey of Dynamic Graph Visualization. Computer Graphics Forum, 36(1):133-159.
Chen, F., Doan, A., Yang, J., and Ramakrishnan, R. (2008). Efficient Information Extraction over Evolving Text Data. In 2008 IEEE 24th International Conference on Data Engineering, pages 943-952.
Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., Ngomo, A.-C. N., Polleres, A., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., and Zimmermann, A. (2021). Knowledge Graphs. ACM Comput. Surv., 54(4).
Kim, H. (2017). Towards a Sales Assistant Using a Product Knowledge Graph. Journal of Web Semantics, 46-47:14-19.
Liu, J., Zhang, Q., Fu, L., Wang, X., and Lu, S. (2019). Evolving Knowledge Graphs. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pages 2260-2268.
Pernischová, R., Dell’Aglio, D., Horridge, M., Baumgartner, M., and Bernstein, A. (2019). Toward Predicting Impact of Changes in Evolving Knowledge Graphs. In SEMWEB.
Pomp, A., Kraus, V., Poth, L., and Meisen, T. (2020). Semantic Concept Recommendation for Continuously Evolving Knowledge Graphs. In Filipe, J., Smialek, M., Brodsky, A., and Hammoudi, S., editors, Enterprise Information Systems, pages 361-385, Cham. Springer International Publishing.
Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau, G., Soroa, A., Ploeger, T., and Bogaard, T. (2016). Building Event-Centric Knowledge Graphs from News. Journal of Web Semantics, 37-38:132-151.
Rossanez, A. and Dos Reis, J. C. (2019). Generating Knowledge Graphs from Scientific Literature of Degenerative Diseases. In Proceedings of the 4th International Workshop on Semantics-Powered Data Mining and Analytics, SEPDA 2019, pages 12-23.
Rossanez, A., Dos Reis, J. C., Torres, R. d. S., and De Ribaupierre, H. (2020). KGen: A Knowledge Graph Generator from Biomedical Scientific Literature. BMC Medical Informatics and Decision Making, 20(S4).
Rossanez, A., Dos Reis, J. C., and Torres, R. d. S. (2020). Representing Scientific Literature Evolution via Temporal Knowledge Graphs. In Proceedings of the 6th Workshop on Managing the Evolution and Preservation of the Data Web, MEPDaW 2020, pages 33-42.
Singh, K., Lytra, I., Radhakrishna, A. S., Shekarpour, S., Vidal, M.-E., and Lehmann, J. (2020). No one is Perfect: Analysing the Performance of Question Answering Components over the dbpedia Knowledge Graph. Journal of Web Semantics, 65:100594.
Tosi, M. D. L. and dos Reis, J. C. (2022). Understanding the Evolution of a Scientific Field by Clustering and Visualizing Knowledge Graphs. Journal of Information Science, 48(1):71-89.
Rodrigues U, Moura D. C., Cunha F. A., and Torres, R. (2019). Graph Visual Rhythms in Temporal Network Analyses. Graphical Models, 103:101021.
Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2017). A Taxonomy and Survey of Dynamic Graph Visualization. Computer Graphics Forum, 36(1):133-159.
Chen, F., Doan, A., Yang, J., and Ramakrishnan, R. (2008). Efficient Information Extraction over Evolving Text Data. In 2008 IEEE 24th International Conference on Data Engineering, pages 943-952.
Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., Ngomo, A.-C. N., Polleres, A., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., and Zimmermann, A. (2021). Knowledge Graphs. ACM Comput. Surv., 54(4).
Kim, H. (2017). Towards a Sales Assistant Using a Product Knowledge Graph. Journal of Web Semantics, 46-47:14-19.
Liu, J., Zhang, Q., Fu, L., Wang, X., and Lu, S. (2019). Evolving Knowledge Graphs. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pages 2260-2268.
Pernischová, R., Dell’Aglio, D., Horridge, M., Baumgartner, M., and Bernstein, A. (2019). Toward Predicting Impact of Changes in Evolving Knowledge Graphs. In SEMWEB.
Pomp, A., Kraus, V., Poth, L., and Meisen, T. (2020). Semantic Concept Recommendation for Continuously Evolving Knowledge Graphs. In Filipe, J., Smialek, M., Brodsky, A., and Hammoudi, S., editors, Enterprise Information Systems, pages 361-385, Cham. Springer International Publishing.
Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau, G., Soroa, A., Ploeger, T., and Bogaard, T. (2016). Building Event-Centric Knowledge Graphs from News. Journal of Web Semantics, 37-38:132-151.
Rossanez, A. and Dos Reis, J. C. (2019). Generating Knowledge Graphs from Scientific Literature of Degenerative Diseases. In Proceedings of the 4th International Workshop on Semantics-Powered Data Mining and Analytics, SEPDA 2019, pages 12-23.
Rossanez, A., Dos Reis, J. C., Torres, R. d. S., and De Ribaupierre, H. (2020). KGen: A Knowledge Graph Generator from Biomedical Scientific Literature. BMC Medical Informatics and Decision Making, 20(S4).
Rossanez, A., Dos Reis, J. C., and Torres, R. d. S. (2020). Representing Scientific Literature Evolution via Temporal Knowledge Graphs. In Proceedings of the 6th Workshop on Managing the Evolution and Preservation of the Data Web, MEPDaW 2020, pages 33-42.
Singh, K., Lytra, I., Radhakrishna, A. S., Shekarpour, S., Vidal, M.-E., and Lehmann, J. (2020). No one is Perfect: Analysing the Performance of Question Answering Components over the dbpedia Knowledge Graph. Journal of Web Semantics, 65:100594.
Tosi, M. D. L. and dos Reis, J. C. (2022). Understanding the Evolution of a Scientific Field by Clustering and Visualizing Knowledge Graphs. Journal of Information Science, 48(1):71-89.
Rodrigues U, Moura D. C., Cunha F. A., and Torres, R. (2019). Graph Visual Rhythms in Temporal Network Analyses. Graphical Models, 103:101021.
Publicado
19/09/2022
Como Citar
DE SOUZA, Eduardo Moreira Freitas; ROSSANEZ, Anderson; DOS REIS, Julio Cesar; TORRES, Ricardo da Silva.
Visualização Interativa da Evolução de Grafos de Conhecimento. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 37. , 2022, Búzios.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 343-354.
ISSN 2763-8979.
DOI: https://doi.org/10.5753/sbbd.2022.224301.