Provenance data for Physics-informed neural networks: the case of the eikonal equation

  • Lyncoln S. de Oliveira Federal University of Rio de Janeiro http://orcid.org/0000-0002-0015-0709
  • Rômulo M. Silva Federal University of Rio de Janeiro
  • Liliane Kunstmann Federal University of Rio de Janeiro
  • Débora Pina Federal University of Rio de Janeiro
  • Daniel de Oliveira Fluminense Federal University
  • Alvaro L. G. A. Coutinho Federal University of Rio de Janeiro
  • Marta Mattoso Federal University of Rio de Janeiro

Abstract


Physics Informed Neural Networks (PINNs) have been showing a great impact on numerical methods applications. Despite the complexity of configuration and model generation, once trained, it presents a significant improvement in calculation time compared to numerical methods. The Physics constraining in training takes place through the modeling of new components added to the neural network's loss function. Such components augment the hyperparameter settings. In this work, we show how collecting provenance data can help the scientist to evaluate hyperparameters in the training of PINNs. We present experiments of PINNs with the partial differential equation given by the Eikonal equation.

Keywords: provenance, deep learning, data science, steering, human-in-the-loop

References

Debnath, L. (2012). First-Order Nonlinear Equations and Their Applications, pages 227–256. Birkhäuser Boston, Boston.

Karmaker, S. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai, C., and Veeramachaneni, K. (2021). Automl to date and beyond: Challenges and opportunities. ACM Comput. Surv.,54(8):1-36.

Kidger, P. and Lyons, T. (2020). Universal approximation with deep narrow networks. In Conference on learning theory, pages 2306-2327.

Kumar, A., Nakandala, S., Zhang, Y., Li, S., Gemawat, A., and Nagrecha, K. (2021). Cerebro: A layered data platform for scalable deep learning. In 11th Annual Conference on Innovative Data Systems Research (CIDR’21).

Moreau, L. and Groth, P. (2013). Provenance: An Introduction to PROV. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers.

Pina, D., Neves, L., de Oliveira, D., and Mattoso, M. (2021). Captura automática de dados de proveniência de experimentos de aprendizado de máquina com keras-prov. In Anais Estendidos do XXXVI SBBD, pages 69-74. SBC.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378:686-707.

Silva, R., Pina, D., Kunstmann, L., de Oliveira, D., Valduriez, P., Coutinho, A., and Mattoso, M. (2021). Capturing provenance to improve the model training of pinns: first hand-on experiences with grid5000. In 42nd CILAMCE, pages 1-7.

Silva, R. M. and Coutinho, A. L. (2020). Physics-informed neural networks for the factored eikonal equation. In 41nd CILAMCE.

Vartak, M., Subramanyam, H., Lee, W.-E., Viswanathan, S., Husnoo, S., Madden, S., and Zaharia, M. (2016). Modeldb: a system for machine learning model management. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, pages 1-3.

Wang, D., Weisz, J. D., Muller, M., Ram, P., Geyer, W., Dugan, C., Tausczik, Y., Samulowitz, H., and Gray, A. (2019). Human-ai collaboration in data science: Exploring data scientists’ perceptions of automated ai. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW):1-24.
Published
2022-09-19
DE OLIVEIRA, Lyncoln S.; SILVA, Rômulo M.; KUNSTMANN, Liliane; PINA, Débora; DE OLIVEIRA, Daniel; COUTINHO, Alvaro L. G. A.; MATTOSO, Marta. Provenance data for Physics-informed neural networks: the case of the eikonal equation. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 37. , 2022, Búzios. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 373-378. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2022.225367.