EduVizBR: A decision support system for Brazilian high school students' performance analysis

  • Chrystinne Fernandes Federal University of Pernambuco (UFPE)
  • Dienert Vieira Federal University of Pernambuco (UFPE)
  • Tassiane Barros Federal University of Pernambuco (UFPE)
  • Aian Shay Federal University of Pernambuco (UFPE)
  • Nicksson Freitas Samsung Development Institute for Informatics (SiDi)
  • Tiago Vinuto Samsung Development Institute for Informatics (SiDi)

Abstract


Due to the explosive growth of educational data, more assistant tools are demanded by Educational managers to mine and filter strategic knowledge into massive databases. In this paper, we present the EduVizBR, a decision support tool designed to assist managers in analyzing the students' performance in the Brazilian national exam (ENEM). The EduVizBr allows managers to explore a massive volume of integrated educational data by narrowing their analyses according to the most relevant impact factors presented in the literature, year of interest, and school subjects. In our case study, we analyzed how gender impacts students' grades in all Brazilian states and the influence of parents' educational attainment and parents' professions on their children's grades.

Keywords: data cleaning, information filtering, data mining, analytics, education, data visualization, data processing

References

Bogarín, A., Cerezo, R., and Romero, C. (2017). A survey on educational process mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(1):e1230.

Chaia, A., Child, F., Dorn, E., Frank, M., Krawitz, M., and Mourshed, M. (2017). What drives student performance in latin america.

Faria, C. R., Junior, M. M. C., and Barbosa, C. R. S. C. D. (2019). Sistema de apoio à decisão por PLN para consultas de pragas na cultura da soja. In Anais do Seminário Integrado de Software e Hardware (SEMISH). Sociedade Brasileira de Computação - SBC.

Farooq, M. S., Chaudhry, A., Shafiq, M. M., and Berhanu, G. (2012). Factors affecting students’ quality of academic performance: A case of secondary.

Lopes, S. G., de Carvalho Xavier, I. M., and dos Santos Silva, A. L. (2020). Rendimento escolar: um estudo comparativo entre alunos da área urbana e da área rural em uma escola pública do Piauí. Ensaio: Avaliação e Políticas Públicas em Educação, 28(109):962-981.

M. A. P. Terrin, C. N. S. J. and Bugatti., P. H. (2014). Utilizando técnicas de mineração de dados para apoiar a busca ativa de famílias em situação de vulnerabilidade e risco social.

Romero, C. and Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery, 10(3).

Velasco, R. B., Carpanese, I., Interian, R., Neto, O. C. G. P., and Ribeiro, C. C. (2020). A decision support system for fraud detection in public procurement. International Transactions in Operational Research, 28(1):27-47.
Published
2022-09-19
FERNANDES, Chrystinne; VIEIRA, Dienert; BARROS, Tassiane; SHAY, Aian; FREITAS, Nicksson; VINUTO, Tiago. EduVizBR: A decision support system for Brazilian high school students' performance analysis. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 37. , 2022, Búzios. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 433-438. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2022.224320.