EduVizBR: A decision support system for Brazilian high school students' performance analysis

  • Chrystinne Fernandes Universidade Federal de Pernambuco (UFPE)
  • Dienert Vieira Universidade Federal de Pernambuco (UFPE)
  • Tassiane Barros Universidade Federal de Pernambuco (UFPE)
  • Aian Shay Universidade Federal de Pernambuco (UFPE)
  • Nicksson Freitas Samsung Instituto de Desenvolvimento para Informática (SiDi)
  • Tiago Vinuto Samsung Instituto de Desenvolvimento para Informática (SiDi)

Resumo


Due to the explosive growth of educational data, more assistant tools are demanded by Educational managers to mine and filter strategic knowledge into massive databases. In this paper, we present the EduVizBR, a decision support tool designed to assist managers in analyzing the students' performance in the Brazilian national exam (ENEM). The EduVizBr allows managers to explore a massive volume of integrated educational data by narrowing their analyses according to the most relevant impact factors presented in the literature, year of interest, and school subjects. In our case study, we analyzed how gender impacts students' grades in all Brazilian states and the influence of parents' educational attainment and parents' professions on their children's grades.

Palavras-chave: data cleaning, information filtering, data mining, analytics, education, data visualization, data processing

Referências

Bogarín, A., Cerezo, R., and Romero, C. (2017). A survey on educational process mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(1):e1230.

Chaia, A., Child, F., Dorn, E., Frank, M., Krawitz, M., and Mourshed, M. (2017). What drives student performance in latin america.

Faria, C. R., Junior, M. M. C., and Barbosa, C. R. S. C. D. (2019). Sistema de apoio à decisão por PLN para consultas de pragas na cultura da soja. In Anais do Seminário Integrado de Software e Hardware (SEMISH). Sociedade Brasileira de Computação - SBC.

Farooq, M. S., Chaudhry, A., Shafiq, M. M., and Berhanu, G. (2012). Factors affecting students’ quality of academic performance: A case of secondary.

Lopes, S. G., de Carvalho Xavier, I. M., and dos Santos Silva, A. L. (2020). Rendimento escolar: um estudo comparativo entre alunos da área urbana e da área rural em uma escola pública do Piauí. Ensaio: Avaliação e Políticas Públicas em Educação, 28(109):962-981.

M. A. P. Terrin, C. N. S. J. and Bugatti., P. H. (2014). Utilizando técnicas de mineração de dados para apoiar a busca ativa de famílias em situação de vulnerabilidade e risco social.

Romero, C. and Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery, 10(3).

Velasco, R. B., Carpanese, I., Interian, R., Neto, O. C. G. P., and Ribeiro, C. C. (2020). A decision support system for fraud detection in public procurement. International Transactions in Operational Research, 28(1):27-47.
Publicado
19/09/2022
FERNANDES, Chrystinne; VIEIRA, Dienert; BARROS, Tassiane; SHAY, Aian; FREITAS, Nicksson; VINUTO, Tiago. EduVizBR: A decision support system for Brazilian high school students' performance analysis. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 37. , 2022, Búzios. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 433-438. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2022.224320.