Time Series Forecasting for Purposes of Irrigation Management Process

  • Dieinison Braga Universidade Federal do Ceará (UFC)
  • Ticiana L. Coelho da Silva Universidade Federal do Ceará (UFC)
  • Atslands Rocha Universidade Federal do Ceará (UFC)
  • Gustavo Coutinho Universidade Federal do Ceará (UFC)
  • Regis P. Magalhães Universidade Federal do Ceará (UFC)
  • Paulo T. Guerra Universidade Federal do Ceará (UFC)
  • Jose A. F. de Macêdo Universidade Federal do Ceará (UFC)

Resumo


Irrigated agriculture is the most water-consuming sector in Brazil, representing one of the main challenges for the sustainable use of water. This study proposes and experimentally evaluates univariate time series models that predict the value of reference evapotranspiration, a metric of the water loss from crop to the environment. Reference evapotranspiration plays an essential role in irrigation management since it can be used to reduce the amount of water that will not be absorbed by the crop. The experiments performed under the meteorological dataset generated by a weather station. Moreover, the results show that the approach is a viable and lower cost solution for predicting ET0, since only a variable needs to be monitored.

Palavras-chave: Time series, prediction model, Irrigated agriculture

Referências

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., et al. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. FAO, Rome, 300(9):D05109.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons, New Jersey, USA.

Brockwell, P. J. and Davis, R. A. (2016). Introduction to time series and forecasting. Springer, Switzerland.

Caminha, H., Silva, T., Rocha, A., and Lima, S. (2017). Estimating reference evapotranspiration using data mining prediction models and feature selection. Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017), 1:272–279.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning, volume 112. Springer, New York, USA.

Legates, D. R. and McCabe, G. J. (1999). Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water resources research, 35(1):233–241.

P. Avishek, P. P. (2017). Practical Time Series Analysis: Master Time Series Data Processing, Visualization, and Modeling using Python. Packt, Birmingham, UK.

Siami-Namini, S. and Namin, A. S. (2018). Forecasting economics and financial time series: Arima vs. lstm. arXiv preprint arXiv:1803.06386.

Smith, T. G. (2017). Pyramid: ARIMA estimators for Python. MIT, USA.

Tan, P.-N. et al. (2006). Introduction to data mining. Pearson Education India, India.

Thiago, H. F., Wagner, M. d. C., and Marcus, A. F. (2017). Atlas irrigação: uso da água na agricultura irrigada. Agência Nacional de Águas, Brasília, DF, Brasil.

Tseng, F.-M. and Tzeng, G.-H. (2002). A fuzzy seasonal arima model for forecasting. Fuzzy Sets and Systems, 126(3):367–376.

Wang, Y. and Witten, I. H. (1996). Induction of model trees for predicting continuous classes.
Publicado
25/08/2018
BRAGA, Dieinison; SILVA, Ticiana L. Coelho da; ROCHA, Atslands; COUTINHO, Gustavo; MAGALHÃES, Regis P.; GUERRA, Paulo T.; MACÊDO, Jose A. F. de. Time Series Forecasting for Purposes of Irrigation Management Process. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 33. , 2018, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 217-222. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2018.22233.