Impact of Electoral Donations on Business Revenue: A Study on Municipal Elections in the State of Minas Gerais

  • Bárbara M. A. Mendes Federal University of Minas Gerais
  • Camila S. Braz Federal University of Minas Gerais
  • Lucas L. Costa Federal University of Minas Gerais
  • Gabriel P. Oliveira Federal University of Minas Gerais https://orcid.org/0000-0002-7210-6408
  • Henrique R. Hott Federal University of Minas Gerais
  • Mariana O. Silva Federal University of Minas Gerais
  • Gisele L. Pappa Federal University of Minas Gerais

Abstract


In Brazil, the prohibition of corporate donations to political campaigns in 2018 aims to strengthen popular participation in the electoral process and reduce the influence of economic power. In this context, this study aims to identify companies whose revenue increased through donations from their partners to the 2020 municipal elections in the state of Minas Gerais. Through experiments using public and private data, we identified suspicious cases of favoritism, where political campaign donations resulted in increased revenue for the donating companies through bidding processes. Overall, our results provide important insights into political campaign donations in Brazil, highlighting the significance of transparency, integrity, and democracy in the electoral process.
Keywords: electoral donations, public bids, elections, time series analysis

References

Attard, J., Orlandi, F., Scerri, S., and Auer, S. (2015). A systematic review of open government data initiatives. Government information quarterly, 32(4):399–418.

Costa, L. L. et al. (2022). Alertas de fraude em licitações: Uma abordagem baseada em redes sociais. In BraSNAM, pages 37–48, Porto Alegre, Brasil. SBC.

Cuturi, M. and Blondel, M. (2017). Soft-dtw: a differentiable loss function for timeseries. In ICML, pages 894–903. PMLR.

Lima, M. et al. (2020). Inferring about fraudulent collusion risk on Brazilian public works contracts in official texts using a Bi-LSTM approach. In EMNLP, pages 1580–1588, Online. Association for Computational Linguistics.

Lyra, M. S. et al. (2021). Characterization of the firm–firm public procurement co-bidding network from the State of Ceará (Brazil) municipalities. Appl. Network Sci., 6(1):1–10.

Oliveira, E. F. and Silveira, M. S. (2018). Open Government Data in Brazil a Systematic Review of Its Uses and Issues. In dg.o, dg.o ’18, New York, NY, USA. ACM.

Oliveira, G. P. et al. (2022). Ferramentas open-source de qualidade de dados para licitações públicas: Uma análise comparativa. In SBBD, pages 116–127. SBC.

Paula, E. L. et al. (2016). Deep learning anomaly detection as support fraud investigation in brazilian exports and anti-money laundering. In ICMLA, pages 954–960. IEEE.

Silva, M. O. et al. (2022). LiPSet: Um conjunto de Dados com Documentos Rotulados de Licitações Publicas. In SBBD DSW, pages 13–24. SBC.

Velasco, R. B. et al. (2021). A decision support system for fraud detection in public procurement. International Transactions in Operational Research, 28(1):27–47.
Published
2023-09-25
MENDES, Bárbara M. A.; BRAZ, Camila S.; COSTA, Lucas L.; OLIVEIRA, Gabriel P.; HOTT, Henrique R.; SILVA, Mariana O.; PAPPA, Gisele L.. Impact of Electoral Donations on Business Revenue: A Study on Municipal Elections in the State of Minas Gerais. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 38. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 420-425. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2023.233278.