Nova Base de Dados Brasileira para Sistemas de Recomendação de Artigos Científicos

  • João Vitor Felipe dos Santos Instituto Federal de Goiás (IFG)
  • Ricardo Marçal de Andrade Nascimento Instituto Federal de Goiás (IFG) http://orcid.org/0009-0003-7604-515X
  • Adriano César de Melo Camargo Instituto Federal de Goiás (IFG)
  • Sergio Daniel Carvalho Canuto Instituto Federal de Goiás (IFG)
  • Gustavo de Assis Costa Instituto Federal de Goiás (IFG)
  • Daniel Xavier de Sousa Instituto Federal de Goiás (IFG)

Resumo


Este trabalho apresenta uma nova base de dados para Sistemas de Recomendação de Artigos Científicos (SRAC). Além de escassas, muitas das bases de dados no contexto SRAC utilizam apenas relações de coautoria como critério de relevância, negligenciando a importância das avaliações explícitas feitas por usuários. Para mitigar esse problema, propomos uma nova base de dados com rótulos de relevância explicitamente definidos, composta por mais de 2 mil pesquisadores, 30 áreas do conhecimento e aproximadamente 71 mil trabalhos associados. O trabalho inclui uma caracterização e avaliação da base proposta, juntamente com outras bases amplamente utilizadas na literatura.
Palavras-chave: Base de Dados Rotulada, Recomendação de Artigos Científicos, Recuperação de Informação

Referências

Alzoghbi, A., Arrascue Ayala, V. A., Fischer, P. M., and Lausen, G. (2015). Pubrec: Recommending Publications Based on Publicly Available Meta-data. 2015 CEUR Workshop Proceedings, 1458:11–18.

Avazpour, I., Pitakrat, T., Grunske, L., and Grundy, J. (2014). Dimensions and Metrics for Evaluating Recommendation Systems. In Robillard, M. P., Maalej, W., Walker, R. J., and Zimmermann, T., editors, Recommendation Systems in Software Engineering, pages 245–273, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bai, X., Wang, M., Lee, I., Yang, Z., Kong, X., and Xia, F. (2019). Scientific Paper Recommendation: A Survey. IEEE Access, 7:9324–9339.

Beel, J., Langer, S., Gipp, B., and Nürnberger, A. (2014). The Architecture and Datasets of Docear’s Research Paper Recommender System. D-Lib Magazine, 20(11/12).

Bulut, B., Kaya, B., and Kaya, M. (2019). A Paper Recommendation System Based on User Interest and Citations. In Proceedings of the 2019 1st International Informatics and Software Engineering Conference (UBMYK), pages 1–5.

Guo, G., Chen, B., Zhang, X., Liu, Z., Dong, Z., and He, X. (2020). Leveraging Title-Abstract Attentive Semantics for Paper Recommendation. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020), pages 67–74. AAAI Press.

Haupka, N., Culbert, J. H., Schniedermann, A., Jahn, N., and Mayr, P. (2024). Analysis of the Publication and Document Types in OpenAlex, Web of Science, Scopus, Pubmed and Semantic Scholar.

Kang, W.-C. and McAuley, J. (2018). Self-Attentive Sequential Recommendation. [link].

Koltun, V. and Hafner, D. (2021). The h-Index Is No Longer an Effective Correlate of Scientific Reputation. PLOS ONE, 16(6):1–16.

Kreutz, C. K. and Schenkel, R. (2022). Scientific Paper Recommendation Systems: A Literature Review of Recent Publications. International Journal on Digital Libraries, 23:335–369.

Ley, M. (2002). The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspectives. In Laender, A. H. F. and Oliveira, A. L., editors, String Processing and Information Retrieval, pages 1–10, Berlin, Heidelberg. Springer Berlin Heidelberg.

Li, Y., Wang, R., Nan, G., Li, D., and Li, M. (2021). A Personalized Paper Recommendation Method Considering Diverse User Preferences. Decision Support Systems, 146.

Li, Z. and Zou, X. (2019). A Review on Personalized Academic Paper Recommendation. Computer and Information Science, 12:33.

Liang, W., Lu, Z., Jin, Q., Xiong, Y., and Wu, M. (2015). Modeling of Research Topic Evolution Associated with Social Networks of Researchers. In Proceedings of the 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Autonomic and Trusted Computing, and 2015 IEEE 15th International Conference on Scalable Computing and Communications (UIC-ATC-ScalCom), pages 1169–1174.

Lima, M., Silva, E., and da Silva, A. (2024). Um Estudo sobre o Uso de Modelos de Linguagem Abertos na Tarefa de Recomendação de Próximo Item. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 510–522, Porto Alegre, RS, Brasil. Sociedade Brasileira de Computação.

Montazerian, M., Zanotto, E. D., and Eckert, H. (2020). Prolificacy and Visibility versus Reputation in the Hard Sciences. Scientometrics, 123(1):207–221.

Price, R., Skopec, M., Mackenzie, S., Nijhoff, C., Harrison, R., Seabrook, G., and Harris, M. (2022). A Novel Data Solution to Inform Curriculum Decolonisation: The Case of the Imperial College London Masters of Public Health. Scientometrics, 127(2):1021–1037.

Rashed, A., Grabocka, J., and Schmidt-Thieme, L. (2019). Attribute-Aware Non-Linear Co-Embeddings of Graph Features. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19), pages 314–321. Association for Computing Machinery.

Said, A. and Bellogín, A. (2014). Comparative Recommender System Evaluation: Benchmarking Recommendation Frameworks. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14), pages 129–136, New York, NY, USA. Association for Computing Machinery.

Sanchez-Lengeling, B., Reif, E., Pearce, A., and Wiltschko, A. B. (2021). A Gentle Introduction to Graph Neural Networks. Distill.

Sugiyama, K. and Kan, M.-Y. (2010). Scholarly Paper Recommendation via User’s Recent Research Interests. In Proceedings of the 10th Annual Joint Conference on Digital Libraries, pages 29–38, New York, NY, USA. Association for Computing Machinery.

Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., and Jiang, P. (2019). BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. [link].

Wang, H., Chen, B., and Li, W.-J. (2013). Collaborative Topic Regression with Social Regularization for Tag Recommendation. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI).

Wang, W., Tang, T., Xia, F., Gong, Z., Chen, Z., and Liu, H. (2022). Collaborative Filtering With Network Representation Learning for Citation Recommendation. IEEE Transactions on Big Data, 8(5):1233–1246.

Wang, X., He, X., Cao, Y., Liu, M., and Chua, T.-S. (2019). KGAT: Knowledge Graph Attention Network for Recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 950–958. Association for Computing Machinery.

Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., and Tan, T. (2019). Session-Based Recommendation with Graph Neural Networks. [link].

Xie, Y., Sun, Y., and Bertino, E. (2021). Learning Domain Semantics and Cross-Domain Correlations for Paper Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21), pages 706–715, New York, NY, USA. Association for Computing Machinery.

Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant, N., Hernandez Abrego, G., Yuan, S., Tar, C., Sung, Y.-h., Strope, B., and Kurzweil, R. (2020). Multilingual Universal Sentence Encoder for Semantic Retrieval. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 87–94, Online. Association for Computational Linguistics.

Zhang, Y., Wang, M., Gottwalt, F., Saberi, M., and Chang, E. (2019). Ranking Scientific Articles Based on Bibliometric Networks with a Weighting Scheme. Journal of Informetrics, 13(2):616–634.
Publicado
29/09/2025
DOS SANTOS, João Vitor Felipe; NASCIMENTO, Ricardo Marçal de Andrade; CAMARGO, Adriano César de Melo; CANUTO, Sergio Daniel Carvalho; COSTA, Gustavo de Assis; SOUSA, Daniel Xavier de. Nova Base de Dados Brasileira para Sistemas de Recomendação de Artigos Científicos. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 40. , 2025, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 289-302. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2025.247079.