Aplicação do Modelo ARIMA no Vertica para Previsão da Velocidade do Vento
Resumo
Este trabalho apresenta um estudo exploratório sobre a aplicação do modelo ARIMA diretamente no banco de dados Vertica para previsão da velocidade do vento. Utilizou-se um conjunto de dados do projeto EOSOLAR, com medições de perfis verticais de vento na região costeira do Maranhão. A avaliação considerou as métricas RMSE (Root Mean Squared Error) e MAE (Mean Absolute Error) sobre 105 modelos treinados. O estudo investigou se a abordagem in-database do ARIMA no Vertica poderia oferecer modelagem eficiente para a previsão da velocidade do vento. Os resultados mostraram que modelos com baixa complexidade alcançaram bom desempenho preditivo.
Referências
Boettiger, C. (2015). An introduction to docker for reproducible research. ACM SIGOPS Operating Systems Review, 49(1):71–79.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. Wiley, 5 edition.
Chastre, C. and Lúcio, V. (2012). Torres pré-fabricadas de betão para suporte de turbinas eólicas. In Estruturas pré-moldadas no mundo – Aplicações e comportamento estrutural, pages 91–106. Universidade NOVA de Lisboa.
Cielen, D., Meysman, A. D. B., and Ali, M. (2021). Data Science: Principles and Practice. Manning Publications.
Elsaraiti, M. and Merabet, A. (2021). A comparative analysis of the arima and lstm predictive models and their effectiveness for predicting wind speed. Energies, 14(20):6782.
Epstein, B. and Roberts, P. (2022). Accelerate Machine Learning with a Unified Analytics Architecture. O’Reilly Media, Inc., Sebastopol, CA, USA.
Fard, A., Zhang, B., Katepalli, K., Stonebraker, M., and Rundensteiner, E. A. (2020). Vertica-ml: Distributed machine learning in vertica database. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pages 755–768. ACM.
Grigonytė, E. and Butkevičiūtė, E. (2016). Short-term wind speed forecasting using arima model. Energetika, 62(1–2):17–26.
Hyndman, R. J. and Athanasopoulos, G. (2021). Forecasting: Principles and Practice. OTexts, Melbourne, Australia, 3 edition. Accessed on March 26, 2025.
Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B., Doshi, L., and Bear, C. (2012). The vertica analytic database: C-store 7 years later. Vertica Systems, An HP Company.
Liu, X., Lin, Z., and Feng, Z. (2021). Short-term offshore wind speed forecast by seasonal arima-a comparison against gru and lstm. Energy, 227:120492.
Lustosa, H., Costa, F., Guimarães, J., and de Oliveira, D. (2020). Savime: An array dbms for simulation analysis and ml models predictions. In International Conference on Database and Expert Systems Applications, pages 357–367. Springer.
Raschka, S., Patterson, J., and Nolet, C. (2020). Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information, 11(4):193.
Salman, A. G. and Kanigoro, B. (2021). Visibility forecasting using autoregressive integrated moving average (arima) models. Procedia Computer Science, 181:586–593.
Vertica (2025). Arima - vertica 25.1.x documentation. Accessed: March 26, 2025.
