Adapting Indicators for Assessing the Health of Scientific Infrastructure Projects: A Business Intelligence Application in Sirius Beamlines
Abstract
This paper presents the development of a Business Intelligence (BI) tool aimed at monitoring the health of scientific infrastructure projects, in the context of the construction of the Sirius Particle Accelerator Beamlines. The solution is based on the implementation of key performance indicators (KPIs), which are currently being validated, with the aim of continuously reflecting factors such as changes in scope, pace of execution of activities and team engagement in updating schedules. The proposal seeks to contribute with quantitative approaches for the dynamic evaluation of projects with a high degree of uncertainty and variable scope, common characteristics of projects in the area of research and development (R&D).
References
Barros, H. N. d. J., Libarino, C. S., and Amado, J. A. D. (2024). Análise de dados com business intelligence para monitoramento microbiológico na indústria 4.0: um estudo de caso simulado no setor alimentício. In Anais da Escola Regional de Computação Bahia, Alagoas e Sergipe (ERBASE).
Boehm, B. W. (1988). A spiral model of software development and enhancement. ACM SIGSOFT Software Engineering Notes, 11(4):14–24.
Borges, J. G. and de Carvalho, M. M. (2011). Sistemas de indicadores de desempenho em projetos. Revista de Gestão e Projetos, 2(1):174–207.
Construction Industry Institute (2006). Project health indicator (phi) tool: Assessing project health during project execution. [link]. Acesso em: 25 abr. 2025.
Databricks (2023). Medallion architecture in the lakehouse. [link]. Acesso em: 10 mai. 2025.
Gartner (2024). Business intelligence (bi) services. [link]. Acesso em: 22 mai. 2025.
Kerzner, H. (2006). Project Management Best Practices: Achieving Global Excellence. John Wiley & Sons, Hoboken, NJ.
Microsoft (2024). Microsoft fabric documentation: Dataflow gen2 & lakehouse. [link]. Acesso em: 5 jun. 2025.
NASA – National Aeronautics and Space Administration (2022). Nasa interim directive: Risk management procedural requirements – nid 7123.69. Technical report, NASA, Washington, D.C.
Petrini, M., Pozzebon, M., and Freitas, H. (2004). Gestão da informação e do conhecimento: uma proposta de framework multidimensional para a análise de iniciativas de business intelligence. Revista de Administração Contemporânea, 8(2):107–132.
Shenhar, A. J. and Dvir, D. (2007). Reinventing Project Management: The Diamond Approach to Successful Growth and Innovation. Harvard Business School Press, Boston.
Sommerville, I. (2011). Software Engineering. Pearson, Boston, 9 edition.
