Achieving Differential Privacy in Smart Home Scenarios

  • Israel C. Vidal UFC
  • Franck Rousseau IMAG
  • Javam C. Machado UFC


With the growth of the Internet of Things (IoT) and Smart Homes, there is an ever-growing amount of data coming from within people’s houses. These data are intrinsically private and should be treated carefully, despite their high value for analysis. In this work, we propose a differentially private strategy to estimate frequencies of values in the context of Smart Home data.

Palavras-chave: Privacy, Differential Privacy, Smart Home


Ács, G. and Castelluccia, C. (2011). I have a dream! (differentially private smart metering). In International Workshop on Information Hiding, pages 118–132. Springer. DOI:

Cao, Y. and Yoshikawa, M. (2015). Differentially private real-time data release over infinite trajectory streams. In 2015 16th IEEE International Conference on Mobile Data Management, volume 2, pages 68–73. IEEE. DOI:

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284. Springer. DOI:

Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci., 9(3–4):211–407.DOI:

Erlingsson, U., Pihur, V., and Korolova, A. (2014). Rappor: Randomized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on computer and communications security, pages 1054–1067. ACM. DOI:

Leal, B. C., Vidal, I. C., Brito, F. T., Nobre, J. S., and Machado, J. C. (2018). doca: Achieving privacy in data streams. In Data Privacy Management, Cryptocurrencies and Blockchain Technology, pages 279–295. Springer. DOI:

McSherry, F. D. (2009). Privacy integrated queries: an extensible platform for privacypreserving data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pages 19–30. ACM. DOI:

Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., and Irwin, D. (2010). Private memoirs of a smart meter. In Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building, pages 61–66. ACM. DOI:

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646. DOI:

UK Power Networks (2015). SmartMeter Energy Consumption Data in London Households. smartmeter-energy-use-data-in-london-households. Accessed: 2019-06-28.

Wang, T., Blocki, J., Li, N., and Jha, S. (2017). Locally differentially private protocols for frequency estimation. In 26th {USENIX} Security Symposium ({USENIX} Security 17), pages 729–745.
VIDAL, Israel C.; ROUSSEAU, Franck; MACHADO, Javam C.. Achieving Differential Privacy in Smart Home Scenarios. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 34. , 2019, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 211-216. ISSN 2763-8979. DOI: