A semantic search approach for hyper relational knowledge graphs
Abstract
Information Retrieval Systems usually employ syntactic search techniques to match a set of keywords with the indexed content to retrieve results. But pure keyword-based matching lacks on capturing user's search intention and context and suffers of natural language ambiguity and vocabulary mismatch. Considering this scenario, the hypothesis raised is that the use of embeddings in a semantic search approach will make search results more meaningfully. Embeddings allow to minimize problems arising from terminology and context mismatch. This work proposes a semantic similarity function to support semantic search based on hyper relational knowledge graphs. This function uses embeddings in order to find the most similar nodes that satisfy a user query.
References
Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., and Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In NIPS’13, page 2787–2795. Curran Associates Inc.
Cudré-Mauroux, P. (2019). Semantic search. In Sakr, S. and Zomaya, A. Y., editors, Encyclopedia of Big Data Technologies. Springer.
Dosso, D. and Silvello, G. (2020). Search text to retrieve graphs: A scalable rdf keyword-based search system. IEEE Access, 8:14089–14111.
Ilievski, F., Garijo, D., Chalupsky, H., Divvala, N. T., Yao, Y., Rogers, C., Li, R., Liu, J., Singh, A., Schwabe, D., and Szekely, P. (2020). Kgtk: A toolkit for large knowledge graph manipulation and analysis. In ISWC 2020, pages 278–293. Springer.
Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective learning on multi-relational data. InICML’11, page 809–816, Madison, WI, USA. Omnipress.
Nielsen, F. A., Mietchen, D., and Willighagen, E. (2017). Scholia, scientometrics and wikidata. In The Semantic Web: ESWC 2017 Satellite Events, pages 237–259. Springer.
Shen, Z., Ma, H., and Wang, K. (2015). A Web-scale system for scientific knowledge exploration. ACL 2018, pages 87–92.
Trouillon, T., Dance, C. R., Gaussier, E., Welbl, J., Riedel, S., and Bouchard, G. (2017). Knowledge graph completion via complex tensor factorization. J. Mach. Learn. Res.,18(1):4735–4772.
Vrandecic, D. (2012). Wikidata: a new platform for collaborative data collection. In Mille, A., Gandon, F., Misselis, J., Rabinovich, M., and Staab, S., editors, WWW’2012, pages 1063–1064. ACM.
Wang, K., Shen, Z., Huang, C., Wu, C.-H., Eide, D., Dong, Y., Qian, J., Kanakia, A.,Chen, A., and Rogahn, R. (2019). A review of microsoft academic services for science of science studies. Frontiers in Big Data, 2:45.
Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). Knowledge graph embedding: A survey of approaches and applications. IEEE TKDE, 29(12):2724–2743.
Yang, B., Yih, W., He, X., Gao, J., and Deng, L. (2015). Embedding entities and relations for learning and inference in knowledge bases. In Bengio, Y. and LeCun, Y., editors, ICLR 2015
