Metodologia para Reconstrução da Geometria da Mama usando Sensores de Profundidade

  • Franciéric de Araújo IFPI
  • Manuel da Silva Neto IFPI
  • Tércio Oliveira IFPI
  • Aura Conci UFF

Resumo


A reconstrução 3D, aliada à termografia, é um meio de validar, ou ajudar o diagnóstico, tornando-o mais preciso. Neste artigo é proposta uma metodologia para reconstrução da geometria 3D da mama visando a realização de simulações computacionais, assim como auxiliar no planejamento de cirurgias. A abordagem consiste em três etapas: calibração de dois Kinects; registro das nuvens de pontos adquiridas; reconstrução da superfície do objeto virtual. Nas validações a média da diferença entre as áreas de superfície foi de 3,55%, 0,93 de Coeficiente de similaridade Dice, na média, e a média da diferença das distâncias entre os mamilos foi de 3,51%.

Referências

Albuquerque, L. A. and Motta, J. M. S. T. (2006). Implementation of 3D shape reconstruction from range images for object digital modeling. ABCM Symposium Series in Mechatronics., 2:81–88.

Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., and Maierhofer, S. (2013). Osnap: Optimization-based snapping for modeling architecture. ACM Transactions on Graphics, 32(1):6:1–6:15.

Aspert, N., Santa-Cruz, D., and Ebrahimi, T. (2002). Mesh: Measuring errors between surfaces using the hausdorff distance. In Proceedings of the IEEE International Conference on Multimedia and Expo, volume I, pages 705 – 708.

Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256.

Bezerra, L. A., Oliveira, M. M., Rolim, T. L., Conci, A., Santos, F. G. S., Lyra, P. R. M., and Lima, R. C. F. (2013). Estimation of breast tumor thermal properties using infrared images. Signal Processing, 93(10):2851–2863.

Borchartt, T. B., Conci, A., Lima, R. C. F., Resmini, R., and Sa´nchez, A´ . (2013). Breast thermography from an image processing viewpoint: A survey. Signal Processing, 93(10):2785–2803.

Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro: Measuring error on simplified surfaces. Comput. Graph. Forum, 17(2):167–174.

Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3):297–302.

Galdames, F., Jaillet, F., and Prez, C. A. (2012). An Accurate Skull Stripping Method Based on Simplex Meshes and Histogram Analysis for Magnetic Resonance Images. Journal of Neuroscience Methods, 206(2):103–119.

Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2):37–50. [published online: 2006].

Jankowski, H. and Stanberry, L. (2012). Confidence regions for means of random sets using oriented distance functions. Scandinavian Journal of Statistics, 39(2):340–357.

Joubert, P. and Brink, W. (2011). Scene reconstruction from uncontrolled motion using a low cost 3D sensor. Proceedings of the Twenty-Second Annual Symposium of the Pattern Recognition Association of South Africa, pages 13–18.

Kantartzis, P., Abdi, M., and Liatsis, P. (2013). Stimulation and measurement patterns versus prior information for fast 3D EIT: A breast screening case study. Signal Processing, 93(10):2838–2850.

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, pages 61–70, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

Klein, R., Liebich, G., and Straer, W. (1996). Mesh reduction with error control. In Visualization 96. ACM, pages 311–318.

Kramer, J., Burrus, N., C., D. H., Echtler, F., and Parker, M. (2012). Hacking the Kinect. Apress, Berkely, CA, USA, 1st edition.

Langmann, B., Hartmann, K., and Loffeld, O. (2012). Depth camera technology comparison and performance evaluation. In ICPRAM, pages 438–444. SciTePress.

Lavoué, G. and Corsini, M. (2010). A comparison of perceptually-based metrics for objective evaluation of geometry processing . IEEE Transactions on Multimedia, 12(7):636–649.

Liu, C., Luan, J., Mu, L., and Ji, K. (2010). The role of three-dimensional scanning technique in evaluation of breast asymmetry in breast augmentation: a 100-case study. Plast Reconstr Surg, 126(6):2125–32.

McCune, B., Grace, L., and Urban, D. (2002). Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.

Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson image editing. ACM Trans. Graph., 22(3):313–318.

Silva, L. F., Saade, D. C. M., Sequeiros-Olivera, G. O., Silva, A. C., Paiva, A. C., Bravo, R. S., and Conci, A. (2014). A new database for breast research with infrared image. Journal of Medical Imaging and Health Informatics, 4(1):92–100.

Tan, M.-L., Su, Y., Lim, C.-W., Selvaraj, S. K., Zhong, L., and Tan, R.-S. (2013). A geometrical approach for automatic shape restoration of the left ventricle. PLoS ONE, 8(7):e68615.

Tomikawa, M., Hong, J., Shiotani, S., Tokunaga, E., Konishi, K., Ieiri, S., Tanoue, K., Akahoshi, T., Maehara, Y., and Hashizume, M. (2010). Real-time 3-dimensional virtual reality navigation system with open mri for breast-conserving surgery. J Am Coll Surg, 210(6):927–33.

Tseng, J.-L. and Lin, Y.-H. (2013). 3D surface simplification based on extended shape operator. WSEAS Transactions on Computers, 12(8):320–330.
Publicado
20/07/2015
Como Citar

Selecione um Formato
DE ARAÚJO, Franciéric; DA SILVA NETO, Manuel; OLIVEIRA, Tércio; CONCI, Aura. Metodologia para Reconstrução da Geometria da Mama usando Sensores de Profundidade. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 15. , 2015, Recife. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2015 . p. 121-130. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2015.10372.