Método para Segmentação Automática de Lesões de Esclerose Múltipla em exames FLAIR

  • Pedro Klein PUCRS/INCT/MACC
  • Alexandre Franco PUCRS
  • Márcio Pinho PUCRS/INCT/MACC

Abstract


This paper proposes a method for automatic Multiple Sclerosis lesion segmentation in Fluid Attenuated Inverse Recovery (FLAIR) Magnetic Ressonance Images. Unlike the current golden standard method, which requires that in addition to the FLAIR images the T1 images must also be acquired, the approach here described intends to replace the usage of T1 images, used on the determination of the brain structures, by the usage of probabilistic atlases used for the same purpose. As preliminary results, it was obtained a segmentation very close to the golden standard, which for this work in progress indicates a good study direction.

References

GARCÍA LORENZO, D.; FRANCIS, S.; NARAYANAN, S.; ARNOLD, D. L.; COLLINS, D. L. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magneti resonance imaging. Medical Image Analysis, 2013. 1 18.

MCCONNEL BRAIN IMAGING CENTRE. BIC The McConnell Brain Imaging Centre: ICBM 152 N Lin 2009. The McConnell Brain Imaging Centre, 1997. Disponivel em: http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009. Acesso em: 15 Abril 2015.

SCHMIDT, P.; GASER, C.; ARSIC, M.; BUCK, D.; FÖRSCHLER, A.; BERTHELE, A.; HOSHI, M.; ILG, R.; SCHMID, V. J.; ZIMMER, C. et al. An automated tool for detection of FLAIR hiperintense white matter lesions in Multiple Sclerosis. NeuroImage 59, 2012. 3774 3783.
Published
2015-07-20
KLEIN, Pedro; FRANCO, Alexandre; PINHO, Márcio. Método para Segmentação Automática de Lesões de Esclerose Múltipla em exames FLAIR. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 15. , 2015, Recife. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2015 . p. 213-216. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2015.10385.