Metastasis Detection of Breast Cancer using Ensemble Deep Learning

  • Danyllo Carlos Silva e Silva UEMA
  • Omar Andres Carmona Cortes IFMA

Resumo


Breast cancer is one of the diseases which mainly affects women and is responsible for most of the deaths in Brazil, followed by skin and lung cancer. Among the consequences of occurrence, there are genetic predisposition, sedentarism, and late menopause, for example. The metastatic stage of this illness has a low survival rate because the disease spreads from the breast to other parts of the body, and the patients need the diagnosis as fast as possible to start the treatment. Moreover, state-of-art works claim that pathologists can reach 0.72 AUC in analyzing an exam composed of thousands of histopathologic images of lymph node sections. In this context, this work presents an Ensemble Convolutional Neural Network with Transfer Learning, called U-net VGG19, for detection using the PatchCamelyon dataset. Results indicate that the proposal reached an AUC of 0.9565 and a loss of 0.2869, reaching better results than state-of-the-art CNNs such as VGG16, VGG19, MobileNetV3Large, ConcatNet, and a custom-made CNN.

Referências

Aggarwal, C. C. (2018). Neural networks and deep learning. In Springer, editor, Book on neural networks and deep learning, pages 9–53. Springer.

Bejnordi, B. E., Veta, M., van Diest, P. J., van Ginneken, B., Karssemeijer, N., Litjens, G., van der Laak, J. A. W. M., and the CAMELYON16 Consortium (2017). Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22):2199–2210.

Beysolow II, T. (2017). Introduction to Deep Learning Using R: a step-by-step guide to learning and implementing Deep Learning Models Using R. Apress.

Filho, M. L. R. and Cortes, O. A. C. (2022). Efficient breast cancer classification using histopathological images and a simple vgg. Revista de Informática Teórica e Aplicada, 29(1):102—-114.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. In Springer, editor, Biological Cybernetics, pages 193–202. Springer.

Gayathri, S., Gopi, V. P., and Palanisami, P. (2020). A lightweight cnn for diabetic retinopathy classification from fundus images. Biomedical Signal Processing and Control, 62:102115.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P. C., Mega, J. L., and Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22):2402–2410.

H., Gao, L. Z. R. S. M. L. V. D. (2016). Densely connected convolutional networks. In University, C., editor, Cornell University (Arvix.org), pages 1–9. Cornell University.

He, K., Z. X. R. S. S. J. (2015). Deep residual learning for image recognition. In University, C., editor, Cornell University (Arvix.org), pages 1–12. Cornell University.

Ismail, N. S. and Sovuthy, C. (2019). Breast cancer detection based on deep learning technique. In 2019 International UNIMAS STEM 12th Engineering Conference (EnCon), pages 89–92.

Jin, Y. W., Jia, S., B., A. A., and Hu, P. (2020). Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients. Cancers (Basel), 12(10):2934.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86:2278 – 2324.

Litjens, G., Bandi, P., Bejnordi, B. E., Geessink, O., Balkenhol, M., Bult, P., Halilovic, A., Hermsen, M., van de Loo, R., Vogels, R., Manson, Q. F., Stathonikos, N., Baidoshvili, A., van Diest, P., Wauters, C., van Dijks, M., and van der Laak, J. (2022). 1399 hestained sentinel lymph node sections of breast cancer patients: the camelyon dataset. In GigaScience, O., editor, the CAMELYON dataset, pages 2–3. Oxford.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. In Springer, editor, Bulletin of mathematical biophysics, pages 115–133. Springer.

PREVENTION, B. N. I. O. C. (2023a). Estimate — 2023. In of Health, B. M., editor, Cancer Incidence in Brazil, pages 39–40. NATIONAL INSTITUTE OF CANCER PREVENTION (BRAZIL).

PREVENTION, B. N. I. O. C. (2023b). Estimate — 2023. In of Health, B. M., editor, Cancer Incidence in Brazil, page 31. NATIONAL INSTITUTE OF CANCER PREVENTION (BRAZIL).

Ronneberger, O., Fischer, P., and Brox, T. (2022). Convolutional networks for biomedical image segmentation. In Springer, editor, Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 234–241. Springer.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088):533–536.

Saikia, A. R., Bora, K., Mahanta, L. B., and Kumar Das, A. (2019). Comparative assessment of CNN architectures for classification of breast fnac images. Tissue and Cell, 57:8–14. EM in cell and tissues.

Shallu and Mehra, R. (2018). Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express, 4(4):247–254.

Silva, D. C. S. e. and Cortes, O. A. C. (2020). On convolutiona neural networks and transfer learning for classifying breast cancer on histopahological images using gpu. In XXVII Brazilian COngress on Biomedical Engineering.

Simonyan, K. and Zisserman, A. (2015a). Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations.

Simonyan, K. and Zisserman, A. (2015b). Very deep convolutional networks for large-scale image recognition. In Oxford, editor, Computer Vision and Pattern Recognition, pages 1–14. Oxford.

Singh, R., Ahmed, T., Kumar, A., Singh, A. K., Pandey, A. K., and Singh, S. K. (2020). Imbalanced breast cancer classification using transfer learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, pages 83–93.

Su, Y., Li, D., and Chen, X. (2021). Lung nodule detection based on faster r-cnn framework. Computer Methods and Programs in Biomedicine, 200:105866.

Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., and Welling, M. (2018). Rotation equivariant cnns for digital pathology. In Springer, editor, Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 234–241. Springer.

Younis, Y. S., Ali, A. H., Alhafidhb, O. K. S., Yahia, W. B., Alazzam, M. B., Hamad, A. A., and Meraf, Z. (2022). Early diagnosis of breast cancer using image processing techniques. In Velmurugan, P., editor, Applications of Nanomaterials and Nanotechnology in Engineering, Environment and Life Sciences, pages 2–5. Hindawi.

Zhang, Y., Liu, J., and Shen, W. (2022). A review of ensemble learning algorithms used in remote sensing applications. In Journals, M. O. A., editor, Applied Science, pages 1–14. MDPI Open Access Journals.
Publicado
27/06/2023
Como Citar

Selecione um Formato
SILVA E SILVA, Danyllo Carlos; CORTES, Omar Andres Carmona. Metastasis Detection of Breast Cancer using Ensemble Deep Learning. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 23. , 2023, São Paulo/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 104-114. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2023.229560.