Análise da influência do tom de pele no sinal de fotopletismografia (PPG)
Abstract
Photoplethysmography is an important technique for studying the physiological parameters of health. The acquisition of this signal is susceptible to many types of artifacts, such as patient movement and noise. The purpose of this article is to demonstrate the behavior of the PPG signal measured on the anterior surface of the wrist, in order to describe the quality of the signal when acquired in different skin tones. Thus, 144 samples of a thousand values each were collected, and with the analysis of the signals, it was identified that there is a sensitive behavior of the PPG signal when associated with skin tone.
References
Böttcher, S., Vieluf, S., Bruno, E., Joseph, B., Epitashvili, N., Biondi, A., Zabler, N., Glasstetter, M., Dümpelmann, M., Van Laerhoven, K., et al. (2022). Data quality evaluation in wearable monitoring. Scientific reports, 12(1):21412.
Cabanas, A. M., Fuentes-Guajardo, M., Latorre, K., León, D., and Martín-Escudero, P. (2022). Skin pigmentation influence on pulse oximetry accuracy: a systematic review and bibliometric analysis. Sensors, 22(9):3402.
Charlton, P. H., Kyriacou, P. A., Mant, J., Marozas, V., Chowienczyk, P., and Alastruey, J. (2022). Wearable photoplethysmography for cardiovascular monitoring. Proceedings of the IEEE, 110(3):355–381.
Elgendi, M. (2021). PPG Signal Analysis: An Introduction Using MATLAB. CRC Press, 1th edition.
Elgendi, M., Fletcher, R., Liang, Y., Howard, N., Lovell, N., Abbott, D., Lim, K., and Ward, R. (2019). The use of photoplethysmography for assessing hypertension. Nature Medicine, 2.
Kurylyak, Y., Lamonaca, F., and Grimaldi, D. (2013). A neural network-based method for continuous blood pressure estimation from a ppg signal. In 2013 IEEE International instrumentation and measurement technology conference (I2MTC), pages 280–283. IEEE.
Kyriacou, P. and Allen, J. (2021). Photoplethysmography: Technology, Signal Analysis and Applications. Elsevier Science.
Kyriacou, P. A. and Chatterjee, S. (2022). The origin of photoplethysmography. In Photoplethysmography, pages 17–43. Elsevier.
Lee, J., Kim, M., Park, H.-K., and Kim, I. Y. (2020). Motion artifact reduction in wearable photoplethysmography based on multi-channel sensors with multiple wavelengths. Sensors, 20(5).
Long, N. M. H. and Chung, W.-Y. (2022). Wearable wrist photoplethysmography for optimal monitoring of vital signs: A unified perspective on pulse waveforms. IEEE Photonics Journal, 14(2):1–17.
Mejia-Mejia, E., Allen, J., Budidha, K., El-Hajj, C., Kyriacou, P. A., and Charlton, P. H. (2022). Photoplethysmography signal processing and synthesis. In Photoplethysmography, pages 69–146. Elsevier.
Paliakaitė, B., Petrėnas, A., Sološenko, A., and Marozas, V. (2021). Modeling of artifacts in the wrist photoplethysmogram: Application to the detection of life-threatening arrhythmias. Biomedical Signal Processing and Control, 66:102421.
Pereira, T., Tran, N., Gadhoumi, K., Pelter, M., Do, D., Lee, R., Colorado, R., Meisel, K., and Hu, X. (2020). Photoplethysmography based atrial fibrillation detection: a review. npj Digital Medicine, 3.
Preejith, S., Alex, A., Joseph, J., and Sivaprakasam, M. (2016). Design, development and clinical validation of a wrist-based optical heart rate monitor. In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pages 1–6. IEEE.
Ray, D., Collins, T., Woolley, S., and Ponnapalli, P. (2021). A review of wearable multi-wavelength photoplethysmography. IEEE Reviews in Biomedical Engineering.
Retsch, S. and Lex, F. (2021). Health monitoring: Application note. In OSRAM Opto Semiconductors. OSRAM Group.
Sañudo, B., De Hoyo, M., Muñoz-López, A., Perry, J., and Abt, G. (2019). Pilot study assessing the influence of skin type on the heart rate measurements obtained by photoplethysmography with the apple watch. Journal of Medical Systems, 43:1–8.
Saugel, B., Kouz, K., Meidert, A., Schulte-Uentrop, L., and Romagnoli, S. (2020). How to measure blood pressure using an arterial catheter: A systematic 5-step approach. Critical Care, 24.
Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., and Seneviratne, A. (2017). A survey of wearable devices and challenges. IEEE Communications Surveys and Tutorials, 19(4):2573–2620.
Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., Wheeler, M. T., and Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of personalized medicine, 7(2):3.
