Análise da influência do tom de pele no sinal de fotopletismografia (PPG)

  • Ayame G. R. da Rosa UNISINOS
  • Jean Schmith UNISINOS
  • Rodrigo Marques de Figueiredo UNISINOS
  • Lúcio R. Prade UNISINOS
  • Janaína Avancini Pinheiro UNISINOS
  • Sandro Rigo UNISINOS

Resumo


A fotopletismografia é uma importante técnica para o estudo dos parâmetros fisiológicos de saúde. A aquisição deste sinal é suscetível a muitos tipos de artefatos, como movimentação do paciente e ruído. O objetivo deste artigo é demonstrar o comportamento do sinal PPG medido na superfície anterior do punho, a fim de descrever a qualidade do sinal quando adquirido em diferentes tons de pele. Com isso, foram coletados 144 amostras de mil valores cada e, com a análise dos sinais, foi identificado que há um comportamento sensível do sinal PPG quando associado ao tom de pele.

Referências

Bent, B., Goldstein, B. A., Kibbe, W. A., and Dunn, J. P. (2020). Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ digital medicine, 3(1):18.

Böttcher, S., Vieluf, S., Bruno, E., Joseph, B., Epitashvili, N., Biondi, A., Zabler, N., Glasstetter, M., Dümpelmann, M., Van Laerhoven, K., et al. (2022). Data quality evaluation in wearable monitoring. Scientific reports, 12(1):21412.

Cabanas, A. M., Fuentes-Guajardo, M., Latorre, K., León, D., and Martín-Escudero, P. (2022). Skin pigmentation influence on pulse oximetry accuracy: a systematic review and bibliometric analysis. Sensors, 22(9):3402.

Charlton, P. H., Kyriacou, P. A., Mant, J., Marozas, V., Chowienczyk, P., and Alastruey, J. (2022). Wearable photoplethysmography for cardiovascular monitoring. Proceedings of the IEEE, 110(3):355–381.

Elgendi, M. (2021). PPG Signal Analysis: An Introduction Using MATLAB. CRC Press, 1th edition.

Elgendi, M., Fletcher, R., Liang, Y., Howard, N., Lovell, N., Abbott, D., Lim, K., and Ward, R. (2019). The use of photoplethysmography for assessing hypertension. Nature Medicine, 2.

Kurylyak, Y., Lamonaca, F., and Grimaldi, D. (2013). A neural network-based method for continuous blood pressure estimation from a ppg signal. In 2013 IEEE International instrumentation and measurement technology conference (I2MTC), pages 280–283. IEEE.

Kyriacou, P. and Allen, J. (2021). Photoplethysmography: Technology, Signal Analysis and Applications. Elsevier Science.

Kyriacou, P. A. and Chatterjee, S. (2022). The origin of photoplethysmography. In Photoplethysmography, pages 17–43. Elsevier.

Lee, J., Kim, M., Park, H.-K., and Kim, I. Y. (2020). Motion artifact reduction in wearable photoplethysmography based on multi-channel sensors with multiple wavelengths. Sensors, 20(5).

Long, N. M. H. and Chung, W.-Y. (2022). Wearable wrist photoplethysmography for optimal monitoring of vital signs: A unified perspective on pulse waveforms. IEEE Photonics Journal, 14(2):1–17.

Mejia-Mejia, E., Allen, J., Budidha, K., El-Hajj, C., Kyriacou, P. A., and Charlton, P. H. (2022). Photoplethysmography signal processing and synthesis. In Photoplethysmography, pages 69–146. Elsevier.

Paliakaitė, B., Petrėnas, A., Sološenko, A., and Marozas, V. (2021). Modeling of artifacts in the wrist photoplethysmogram: Application to the detection of life-threatening arrhythmias. Biomedical Signal Processing and Control, 66:102421.

Pereira, T., Tran, N., Gadhoumi, K., Pelter, M., Do, D., Lee, R., Colorado, R., Meisel, K., and Hu, X. (2020). Photoplethysmography based atrial fibrillation detection: a review. npj Digital Medicine, 3.

Preejith, S., Alex, A., Joseph, J., and Sivaprakasam, M. (2016). Design, development and clinical validation of a wrist-based optical heart rate monitor. In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pages 1–6. IEEE.

Ray, D., Collins, T., Woolley, S., and Ponnapalli, P. (2021). A review of wearable multi-wavelength photoplethysmography. IEEE Reviews in Biomedical Engineering.

Retsch, S. and Lex, F. (2021). Health monitoring: Application note. In OSRAM Opto Semiconductors. OSRAM Group.

Sañudo, B., De Hoyo, M., Muñoz-López, A., Perry, J., and Abt, G. (2019). Pilot study assessing the influence of skin type on the heart rate measurements obtained by photoplethysmography with the apple watch. Journal of Medical Systems, 43:1–8.

Saugel, B., Kouz, K., Meidert, A., Schulte-Uentrop, L., and Romagnoli, S. (2020). How to measure blood pressure using an arterial catheter: A systematic 5-step approach. Critical Care, 24.

Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., and Seneviratne, A. (2017). A survey of wearable devices and challenges. IEEE Communications Surveys and Tutorials, 19(4):2573–2620.

Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., Wheeler, M. T., and Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of personalized medicine, 7(2):3.
Publicado
27/06/2023
ROSA, Ayame G. R. da; SCHMITH, Jean; FIGUEIREDO, Rodrigo Marques de; PRADE, Lúcio R.; PINHEIRO, Janaína Avancini; RIGO, Sandro. Análise da influência do tom de pele no sinal de fotopletismografia (PPG). In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 23. , 2023, São Paulo/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 126-137. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2023.229566.