A Markerless Augmented Reality Environment for Medical Data Visualization

  • Márcio C. F. Macedo UFBA
  • Caio S. de B. Almeida UFBA
  • Antonio C. S. Souza IFBA / UFBA
  • Josildo P. Silva IFBA / UFBA
  • Antonio L. Apolinário Jr. UFBA
  • Gilson A. Giraldi LNCC

Resumo


Augmented Reality (AR) techniques can be applied in medicine to help physicians in diagnosis, treatment planning, surgery simulation, among others. In craniofacial treatments, it can also be used to support prediction in patient’s own body. In this context, AR applications should fill more requirements than usual, like markerless support, tracking deformable objects and volume rendering. This paper presents a markerless AR environment, with support to deformable models, for volumetric medical data visualization based on a simple off-the-shelf hardware.

Referências

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Comput. Graph. Appl., 21(6):34–47.

Baudet, V., Beuve, M., Jaillet, F., Shariat, B., and Zara, F. (2009). Integrating tensile parameters in mass-spring system for deformable object simulation. Technical Report RR-LIRIS-2009-034, LIRIS UMR 5205 CNRS/INSA de Lyon/Université.

Bichlmeier, C., Wimmer, F., Heining, S. M., and Navab, N. (2007). Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality. In ISMAR, pages 1–10. IEEE Computer Society.

Bruckner, S., Grimm, S., Kanitsar, A., and Gröller, M. E. (2005). Illustrative contextpreserving volume rendering. In EUROVIS, pages 69–76. Eurographics Association.

Card, S. K., Mackinlay, J. D., and Shneiderman, B., editors (1999). Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Engel, K., Kraus, M., and Ertl, T. (2001). High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 9–16. ACM.

Hadwiger, M., Ljung, P., Salama, C. R., and Ropinski, T. (2009). Advanced illumination techniques for gpu-based volume raycasting. In ACM SIGGRAPH 2009 Courses, pages 2:1–2:166. ACM.

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. (2011). Kinectfusion: realtime 3d reconstruction and interaction using a moving depth camera. In UIST, pages 559–568. ACM.

Kutter, O., Aichert, A., Bichlmeier, C., Traub, J., Heining, S. M., Ockert, B., Euler, E., and Navab, N. (2008). Real-time Volume Rendering for High Quality Visualization in Augmented Reality. In AMI-ARCS.

Li, W., Mueller, K., and Kaufman, A. (2003). Empty space skipping and occlusion clipping for texture-based volume rendering. In VIS, pages 317–324. IEEE.

Macedo, M., Apolinario, A., and Souza, A. C. (2013). A Robust Real-Time Face Tracking using Head Pose Estimation for a Markerless AR System. In SVR.

Maier-Hein, L., Franz, A. M., Fangerau, M., Schmidt, M., Seitel, A., Mersmann, S., Kilgus, T., Groch, A., Yung, K., dos Santos, T. R., and Meinzer, H.-P. (2011). Towards mobile augmented reality for on-patient visualization of medical images. In Bildverarbeitung für die Medizin, pages 389–393. Springer.

Meister, S., Izadi, S., Kohli, P., Hämmerle, M., Rother, C., and Kondermann, D. (2012). When can we use kinectfusion for ground truth acquisition? In IROS. IEEE.

Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. (2006). Physically based deformable models in computer graphics. Computer Graphics Forum, 25(4):809–836.

Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of the ICP algorithm. In 3DIM.

Sumner, R. W., Schmid, J., and Pauly, M. (2007). Embedded deformation for shape manipulation. ACM Trans. Graph., 26(3).

Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color images. In Computer Vision, 1998. Sixth International Conference on, pages 839–846.

Viola, P. and Jones, M. J. (2004). Robust real-time face detection. Int. J. Comput. Vision, 57(2):137–154.

Volino, P. and Thalmann, N. (2000). Virtual Clothing.: Theory and Practice. Springer-Verlag GmbH.

Wieczorek, M., Aichert, A., Kutter, O., Bichlmeier, C., Landes, J., Heining, S. M., Euler, E., and Navab, N. (2010). GPU-accelerated Rendering for Medical Augmented Reality in Minimally-Invasive Procedures. In Proceedings of BVM 2010. Springer.

Xu, S., Liu, X., Zhang, H., and Hu, L. (2010). An improved realistic mass-spring model for surgery simulation. In HAVE, page 1–6. IEEE.
Publicado
28/07/2014
MACEDO, Márcio C. F.; ALMEIDA, Caio S. de B.; SOUZA, Antonio C. S.; SILVA, Josildo P.; APOLINÁRIO JR., Antonio L.; GIRALDI, Gilson A.. A Markerless Augmented Reality Environment for Medical Data Visualization. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 14. , 2014, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2014 . p. 1714-1723. ISSN 2763-8952.