Morphological characterization and comparison of coronary arterial trees

  • C. A. Bulant LNCC / INCT-MACC
  • P. J. Blanco LNCC / INCT-MACC
  • A. N. Assunção Jr USP
  • G. Liberato USP
  • T. P. Lima USP
  • J. R. Parga Filho USP
  • Pedro A. Lemos USP
  • L. F. R. Ávila USP
  • A. R. Feijóo LNCC / INCT-MACC

Resumo


In this work we propose the core work-flow for characterizing and comparing coronary trees from a geometrical point of view. The ultimate goal of this procedure is to develop a set of computational tools that can be used to estimate the likelihood of two heart vasculatures, and therefore be able to establish a similarity criteria between them.

Referências

Antiga, L., Ene-Iordache, B., and Remuzzi, A. (2003). Centerline computation and geometric analysis of branching tubular surfaces with application to blood vessel modeling. In The 11-th International Conference on Computer Graphics, Visualization and Computer Vision, University of West Bohemia, Czech Republic, Feb 3-7, 2003.

Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., and Steinman, D. A. (2008). An image-based modeling framework for patient-specific computational hemodynamics. Medical & Biological Engineering & Computing, 46(11):1097–1112.

Beslic, N. and Kucukalic-Selimovic, E. (2011). Comparison of the diagnostic capabilities of noninvasive methods for early detection of coronary artery disease. Medicinski arhiv, 65(2):96–98.

Bulant, C. A. (2013). Angiography image reconstruction and segmentation using variational techniques and level-set methods. Master thesis, LNCC, Av. Getúlio Vargas 333, Petrópolis, RJ, Brazil.

Dodge, J. T., Brown, B. G., Bolson, E. L., and Dodge, H. T. (1992). Lumen diameter of normal human coronary arteries. influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation, 86(1):232–246.

Endoh, R., Homma, T., Furihata, Y., Sasaki, Y., and Fukushima, T. (1988). A morphometric study of the distribution of early coronary atherosclerosis using arteriography. Artery, 15(4):192–202.

Giddens, D. P., Zarins, C. K., and Glagov, S. (1993). The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of biomechanical engineering, 115(4B):588–594.

Mansur, A. d. P. and Favarato, D. (2012). Mortalidade por doen cas cardiovasculares no brasil e na região metropolitana de são paulo. Arquivos Brasileiros de Cardiologia, 99(2):755–761.

Piccinelli, M., Veneziani, A., Steinman, D. A., Remuzzi, A., and Antiga, L. (2009). A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE transactions on medical imaging, 28(8):1141–1155.

Schoenenberger, A. W. and Erne, P. (2009). Coronary artery disease definitions and epidemiology. Therapeutische Umschau. Revue thérapeutique, 66(4):223–229.

Sun, Z. (2010). Multislice CT angiography in coronary artery disease: Technical developments, radiation dose and diagnostic value. World Journal of Cardiology, 2(10):333.

Zhu, H. (2003). Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(12):2260–2265.
Publicado
28/07/2014
BULANT, C. A. et al. Morphological characterization and comparison of coronary arterial trees. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 14. , 2014, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2014 . p. 1768-1771. ISSN 2763-8952.