Machine Learning-Based Diabetes Detection Using Photoplethysmography Signal Features

  • Filipe A. C. Oliveira USP
  • Felipe M. Dias USP
  • Marcelo A. F. Toledo USP
  • Diego A. C. Cardenas USP
  • Douglas A. Almeida USP
  • Estela Ribeiro USP
  • Jose E. Krieger USP
  • Marco A. Gutierrez USP

Abstract


Diabetes is a chronic condition which prevention and control is done mostly by minimally invasive devices. In this work, we propose a noninvasive method based on photoplethysmography (PPG) for cost-effective and discomfort-free diabetes detection and prevention. We used PPG signal features and patient metadata from a public dataset for classifying subjects as Diabetic or non-Diabetic. The Logistic Regression and eXtreme Gradient Boosting algorithms were evaluated using a five-fold cross validation approach and achieved a mean AUC of 0.79 ± 0.15 and 0.73 ± 0.17, respectively. Our results align with existing literature, supporting the use of machine learning techniques for developing non-invasive diabetes detection and prevention devices.

References

Avram, R., Olgin, J. E., Kuhar, P., Hughes, J. W., Marcus, G. M., Pletcher, M. J., Aschbacher, K., and Tison, G. H. (2020). A digital biomarker of diabetes from smartphone-based vascular signals. Nature medicine, 26(10):1576—1582.

Chen, T. and Guestrin, C. (2016a). XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.

Chen, T. and Guestrin, C. (2016b). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, page 785–794. Association for Computing Machinery.

Chowdhury, M. H., Shuzan, M. N. I., Chowdhury, M. E., Mahbub, Z. B., Uddin, M. M., Khandakar, A., and Reaz, M. B. I. (2020). Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques. Sensors, 20(11).

Costa, T. B. D. S., Dias, F. M., Cardenas, D. A. C., Toledo, M. A. F. D., Lima, D. M. D., Krieger, J. E., and Gutierrez, M. A. (2023). Blood pressure estimation from photoplethysmography by considering intraand inter-subject variabilities: Guidelines for a fair assessment. IEEE Access, 11:57934–57950.

DeFronzo, R. A., Bonadonna, R. C., and Ferrannini, E. (1992). Pathogenesis of NIDDM: A Balanced Overview. Diabetes Care, 15(3):318–368.

El-Hajj, C. and Kyriacou, P. (2021). Cuffless blood pressure estimation from ppg signals and its derivatives using deep learning models. Biomedical Signal Processing and Control, 70:102984.

Gupta, S., Singh, A., Sharma, A., and Tripathy, R. K. (2022). dsvri: A ppg-based novel feature for early diagnosis of type-ii diabetes mellitus. IEEE Sensors Letters, 6(9):1–4.

Hettiarachchi, C. and Chitraranjan, C. (2019). A machine learning approach to predict diabetes using short recorded photoplethysmography and physiological characteristics. In Artificial Intelligence in Medicine, volume 11526, pages 322–327. Springer International Publishing.

Kirk, J. K. and Stegner, J. (2010). Self-monitoring of blood glucose: Practical aspects. Journal of Diabetes Science and Technology, 4(2):435–439.

LaMonte, M. J., Blair, S. N., and Church, T. S. (2005). Physical activity and diabetes prevention. Journal of Applied Physiology, 99(3):1205–1213.

Liang, Y., Chen, Z., Liu, G., and Elgendi, M. (2018). A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in china. Scientific Data, 8:180020.

Lin, W.-H., Li, X., Li, Y., Li, G., and Chen, F. (2020). Investigating the physiological mechanisms of the photoplethysmogram features for blood pressure estimation. Physiological Measurement, 41(4):044003.

Mejía-Mejía, E., Allen, J., Budidha, K., El-Hajj, C., Kyriacou, P. A., and Charlton, P. H. (2022). 4 photoplethysmography signal processing and synthesis. In Allen, J. and Kyriacou, P., editors, Photoplethysmography, pages 69–146. Academic Press.

MILLASSEAU, S., KELLY, R., RITTER, J., and CHOWIENCZYK, P. (2002). Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clinical Science, 103(4):371–377.

Moreno, E. M., Lujan, M. J. A., Rusinol, M. T., Fernandez, P. J., Manrique, P. N., Trivino, C. A., Miquel, M. P., Rodriguez, M. A., and Burguillos, M. J. G. (2017). Type 2 diabetes screening test by means of a pulse oximeter. IEEE Transactions on BioMedical Engineering, 64(2):341–351.

Mukkamala, R., Hahn, J.-O., and Chandrasekhar, A. (2022). 11 - photoplethysmography in noninvasive blood pressure monitoring. In Allen, J. and Kyriacou, P., editors, Photoplethysmography, pages 359–400. Academic Press.

Nirala, N., Periyasamy, R., Singh, B. K., and Kumar, A. (2019). Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine. Biocybernetics and Biomedical Engineering, 39(1):38–51.

Nitzan, M. and Ovadia-Blechman, Z. (2022). 9 physical and physiological interpretations of the ppg signal. In Allen, J. and Kyriacou, P., editors, Photoplethysmography, pages 319–340. Academic Press.

Panwar, M., Gautam, A., Dutt, R., and Acharyya, A. (2020). CardioNet: Deep learning framework for prediction of CVD risk factors. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE.

Pilt, K., Ferenets, R., Meigas, K., Lindberg, L.-G., Temitski, K., and Viigimaa, M. (2013). New photoplethysmographic signal analysis algorithm for arterial stiffness estimation. The Scientific World Journal, 2013:1–9.

Reddy., V. R., Dutta Choudhury., A., Jayaraman., S., Kumar Thokala., N., Deshpande., P., and Kaliaperumal., V. (2017). Perdmcs: Weighted fusion of ppg signal features for robust and efficient diabetes mellitus classification. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - SmartMedDev, pages 553–560. SciTePress.

Srinivasan, V. B. and Foroozan, F. (2021). Deep learning based non-invasive diabetes predictor using photoplethysmography signals. In 2021 29th European Signal Processing Conference (EUSIPCO), pages 1256–1260.

Usman, S., Reaz, M., and Ali, M. (2011). Repeated measurement analysis of the area under the curve of photoplethysmogram among diabetic patients. Life Sci. J, 10:532–539.

Zanelli, S., Ammi, M., Hallab, M., and El Yacoubi, M. A. (2022). Diabetes detection and management through photoplethysmographic and electrocardiographic signals analysis: A systematic review. Sensors, 22(13):4890.

Zanelli, S., Yacoubi, M. A. E., Hallab, M., and Ammi, M. (2023). Type 2 diabetes detection with light cnn from single raw ppg wave. IEEE Access, 11:57652–57665.

Zhang, G., Mei, Z., Zhang, Y., Ma, X., Lo, B., Chen, D., and Zhang, Y. (2020). A noninvasive blood glucose monitoring system based on smartphone ppg signal processing and machine learning. IEEE Transactions on Industrial Informatics, 16(11):7209–7218.
Published
2024-06-25
OLIVEIRA, Filipe A. C.; DIAS, Felipe M.; TOLEDO, Marcelo A. F.; CARDENAS, Diego A. C.; ALMEIDA, Douglas A.; RIBEIRO, Estela; KRIEGER, Jose E.; GUTIERREZ, Marco A.. Machine Learning-Based Diabetes Detection Using Photoplethysmography Signal Features. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 24. , 2024, Goiânia/GO. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 94-105. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2024.1889.

Most read articles by the same author(s)