Evaluation of machine learning techniques for classification of kidney biopsy report sections assisted by DeCS terminology
Abstract
Natural language processing is nowadays a valuable resource in biomedical informatics mainly due to the increasing demand for knowledge and the availability of documents in digital format. This paper describes the use and evaluation of five machine learning techniques applied to renal biopsy reports written as free text. The pre-processing and the named entity recognition tasks using the DeCS terminology is also reported.
References
Frunza O. e Inkpen D., Extraction of Disease-Treatment Semantic Relations from Biomedical Sentences, Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, ACL 2010, pages 91–98,
Uppsala, Sweden, 15 July 2010 Caffé Maria Izabela, Perez Pedro Santoro, Baranauskas José Augusto. Avaliação do Algoritmo de Stacking em Dados Biomédicos. In: XI Workshop de Informática Médica, Anais do XXXI Congresso da Sociedade Brasileira de Computação, Natal, RN, 19-22 de julho de 2011.
Bodenreider, O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research, 32(suppl.1):D267–D270, January 2004.
Rink B, Harabagiu S, Roberts K., Automatic extraction of relations between medical concepts in clinical texts, J Am Med Inform Assoc. 2011 Sep-Oct;18(5):594-600.
Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, Xu H., A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries, J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6.
Patrick JD, Nguyen DH, Wang Y, Li M., A knowledge discovery and reuse pipeline for information extraction in clinical notes, J Am Med Inform Assoc. 2011 Sep-Oct;18(5):574-9.
Patel CO, Cimino JJ, Using semantic and structural properties of the Unified Medical Language System to discover potential terminological relationships, J Am Med Inform Assoc. 2009 May-Jun;16(3):346-53.
Porter MF. An algorithm for suffix stripping. Program: electronic library & information systems. 2006;40(3):211-218. DOI: 10.1108/00330330610681286.
Weiss SM, Indurkhya N, Predictive Data Mining: A Practical Guide, MK, San Francisco, CA, 1998.
Witten I. H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco, 1999
